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TYPICAL EXAMPLES OF

CLASSICAL NOVAE

M. Hack, P. L. Seh, elli, A. Bianchini, H. Duerbeck

I. INTRODUCTION

Because of the very complicated individual-

istic behavior of each nova, we think it neces-

sary to review the observations of a few well-
observed individuals. We have selected a few

objects of different speed classes, which have

been extensively observed.

troscopic and photometric periods.

GK Per 1901, fast nova. t_ = 13d.

Am = 0.2V-11.8...14.0V; light curve type

Ao.

Spectroscopic binary, P =1.996803 d.

Characteristics: Many unusual characteris-

tics; minor outbursts at quiescence; it has

the longest orbital period among novae.

They are:

V1500 Cygni 1975, very fast nova. t3 = 3.6 d.

Range of the light curve Am = 2.2 B-21.5p;

light curve of Duerbeck type A (smooth, fast

decline without major disturbances).

Quiescence: It presents short period vari-

ations.

Characteristics: Large outburst amplitude.

V603 Aql 1918, fast nova. t_ = 8 d.

Am =-1.1V-12.0V; light curve type Ao

(smooth, fast decline without major distur-

bances, oscillations in the transition stage).

Spectroscopic binary P = 0.13854 d; eclips-

ing binary?

CP Pup 1942, fast nova. t_ = 8 d.

Am = 0.5V-15.0V; light curve type A.

Spectroscopic binary with P=0.061429 d;

light variations with P = 0.06196 d.

Characteristics: It has the shortest binary pe-

riod among novae; slightly different spec-

V 1668 Cyg 1978, moderately fast nova. t 3 =

23 d.

Am = 6.7p- 20.0p; light curve type Ba (de-
cline with standstills or other minor fluctua-

tions).

Quiescence: It shows short period vari-

ations.

FH Ser 1970, slow nova. t3 = 62 d.

Am = 4.5V- 16.2p; light curve type Cb

(strong brightness decline before the onset

of the transition minimum).

Characteristics: Dust formation; the bolom-

etric magnitude remains constant for a pe-

riod much longer than the optical one.

DQ Her 1934, slow nova. t 3 =94 d.

Am = 1.3V -14.5V (var); light curve type Ca

(small variation of visual brightness at

maximum).

Spectroscopic and eclipsing binary with P =

0.193621 d

Characteristics: Pronounced dust formation;

unusual occurrence of molecular lines in

premaximum spectrum.
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T Aur 1891,slownova.t_= 100d.
Am 4.2p-15.2p; light curve type Ca.

Characteristics: Great similarity with DQ
Her.

RR Pic 1925, slow nova. t_ = 150 d.

Am = 1.0V-I 1.9p; light curve type D (slow

development, extended premaximum, maxi-

mum often with several brightness peaks).

Characteristics: Spectroscopic binary, P =
0.1450255d.

Light variations with the same period;

eclipses shallow or absent.

HR Del 1967, very slow nova. t3 = 230 d.

Am = 3.5 V-12.0 V; light curve type D.

Spectroscopic binary, P = 0.2141674.

Characteristics: Extremely slow nova, with

no appreciable formation of dust.

A catalogue of all observed novae, from the

two oldest ones, CK Vul 1670 and WY Sge

1783 to Nova Cyg 1986, has been prepared by

Duerbeck (1987c). For most objects, bright-

ness ranges, accurate positions, finding charts,

and bibliographies on light curves, spectros-

copy, UV, IR, radio observations, nebular

shells variability in quiescence and evidences

for duplicity are given.

II. Vi500 CYGNI 1975: A VERY FAST
NOVA

(written by Hack)

It was discovered on August 29, 1975, and it

is one of the most extensively observed novae.

A large number of spectroscopic and photom-
etric observations are collected in the issue of

the Astron. Zh.54, May-June 1977 (Sov. As-

tron. 21, No.3). At maximum brightness,

reached on August 30, V was equal to 1.7. Nova

Cyg 1975 is peculiar for several reasons: a) It is

an extremely fast nova, with t3 = 3.9 days, t7 =

45 days (Figure 8.1). b) It presented a very

large light amplitude, V = 19 mag, with an

absolute visual magnitude at maximum of

about -10 (as derived by Becker and Duerbeck,

1980, from its nebular expansion parallax),

which makes it the brightest of all galactic and

extragalactic novae ever observed, with the
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Figure 8-1. V 1500 Cygni. continuum light curve.
(J?om FeHand et al.. 1986)

exception of CP Pup, which reached Mr = -11.5

(Duerbeck and Seitter, 1979). Generally, novae

at maximum are less bright than Mv = -8.5. The

amplitudes of the outburst of both VI500 Cyg

and CP Pup are more typical of supernovae

than novae; however, their expansional veloci-

ties have the typical values of very fast novae.

c) The absolute magnitude of V I500 Cyg at
minimum before outburst was about +9 or

fainter, which makes it similar to the U Gem

stars, while the majority of novae are about 5

mag brighter. This value of M v at minimum

was deduced from the fact that superposition of

the blue Palomar survey with the field of

V1500 Cyg (Beardsley et al., 1975) indicates

no star brighter than mag 21 on the print.

However, the outburst started when the star

was 5 mag brighter than the normal prenova

luminosity. This increase in luminosity was ob-

served on August 5, 1975. The color, during the

pre outburst phase was B-V = 1.3 and V-R =

2.5, suggesting a color temperature of about

4,000 K, i.e., a K- or M-type star. d) At maxi-

mum, the spectral type was B2 la, the earliest

spectral type ever observed for novae, e) The

absorption spectrum shows broad diffuse

bands; the two systems, diffuse-enhanced and

orion, were not evident.

In fact, the diffuse-enhanced spectrum ap-

peared at 0.3 days after optical maximum with

an expansion velocity of-3,850 km/s; it



reachedits greateststrength0.9dayslaterand
lastedslightlymorethan1dayasanabsorption
feature.Forthisreason,manyobservershave
notdetectedit (Ferland,1977a).Also,thehigh
valueof theDopplerbroadeningcanmakethe
detectionof thevariouscomponentsdifficult,
blendingthemtogether.

Thepenetrationof theprincipalshellbythe
diffuse--enhancedoccurredwithoutanyno-
ticeableinteraction,becausethe principal
spectrumdid notshowanyappreciablevari-
ation.Theinterpretationmaybethatthegreat
majorityof thematerialwasexpelledinoneex-
plosiveeventalmostinstantaneously,f) The

expansional velocity of the principal spectrum

was very high, much higher than in normal

novae (Boyarchuk et al., 1977), as indicated
below:

August 29: absorption expansional velocity V

= - 1300 km/s,

Total (Emission + Absorption) Doppler broad-

ening AV =2200 km/s

August 30: V = -1700 kin/s, AV = 4000 km/s.

August 31: V = -2200 km/s, AV =6100 km/s.

I1.A. MASS LOST IN THE OUTBURST

A lower limit of the mass ejected in the out-

burst has been computed by Wolf (1977). From

the equivalent widths of the Balmer absorption

lines, the column density n02 Ar (*) is com-

puted, and from the observed temperature at

maximum, by assuming a plausible value of the

electron density, one gets n, Ar = 4.2 x 10>

cm -2 using the Boltzmann and Saha equations.

From n, &r and N=n,, a value of Ar = 4.2 x
l0 _3cm = 600 solar radii is derived. Hence, the

mass lost in the outburst is given by Am =

4"rr(_r)2Arn, m. = 1.5 x 1WSg =105m o" As we

shall see later, infrared observations by Gal-

lagher and Ney (1976) and by Ennis et al.

_.rte2
(*) W_,=_--_- fn02 Ar valid for an optically

thin layer (Doppler branch of the curve of

growth).

(1977) estimate 10 -f m o < Am < 10 ' m o-
From this value of the mass lost in the outburst

and the expansional velocity, it follows that the

kinetic energy liberated in the explosion is Et,o

> 10. -_g x(2 x 102cm/s) 2=4x 1(I44 ergcom-

parable to the energy radiated away, Er,,_ = l(P _

erg.

ll.B. SPECTRAL VARIATIONS

The spectral variations were as follows: Au-

gust 29 B21a+, T (pseudo-photosphere = T

continuum) -- 30,000 K,T(envelope) -- 20,000

K. August 30-31 A21a+. The lines show P Cyg

profiles with faint emission wings; the latter in-

crease fast in intensity.

September 1, almost all the absorption fea-

tures have disappeared. From September I to

September 10, metallic emission lines appear

first and He 1, He II, N I!I, plus several forbid-

den lines later on. The nebular stage was

reached 9 days after maximum (Figure 8-2).

From September 2, 1975, to January 5, 1976,

the Balmer emission lines present several

peaks at almost constant velocity: -1050, -580,

+150 + 600 km/s. A similar behavior is shown

also by the O I 8446 A permitted line and 6300

A forbidden line. The four peaks have a differ-

ent relative intensity and they are not all ob-

servable in the high excitation lines of [Fe X],

Fe XI], and [S VIII] (Figure 8-3, 8-4, and 8-5).

High dispersion spectra of the photographic

range have been obtained from September 2 to

October 2 by Sanyal and Willson (19801. Rush

and Thompson (19771 have made spectro-

photometric observations with time resolution

of 3-15 minutes. All the hydrogen lines ob-

served from September 7 to II show that the

relative intensity of the four peaks change si-

multaneously in each Balmer line on a time

scale of 5 minutes. Following a model sug-

gested by Weaver (19741 for V603 Aql, they as-

sume that four blobs of matter were ejected si-

multaneously in two opposite directions, two at

higher velocities and two at lower velocities.

Since each peak is produced in a separate blob,

a sudden change in the radiation from the stel-

lar pseudophotosphere will produce a change

in the ionization of the hydrogen in the blob.
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Figure 8-2. The spectrum of V 1500 Cyg: a) August 29 and 30: the absmption lines dominate the spectrum. P Cyg pro-

files appear on August 30; b) August 31 and September 2: the emission lines dominate the spectrum (from Voloshina

and Doroshenko, 1977); _') The spectrum/)'om the beginning of September to the end of October (fi'om Rosino and

Tempesti, 1977); d) Line intensity variation with time after maximum light (from Ferland et al., 1977).
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However, the assumption that all the blobs are

ejected toward and away from the observer in

the direction of the line of sight seems not very

I

i a) Hfl Profile
i

Sep. 6

I , I

VELOCITY (km/sec)

Figure 8-3a. Line profiles of Hj9 at different epochs

(from Sanyal and Willson, 1980). b) Line profiles of He

and 0 1 8446 (from Strittmatter et al., 1977).

plausible. It seems more plausible to assume

that the blobs are ejected in several directions

at about the same velocity and that the ob-

served differences in radial velocity are rather

due to projection effects.

I ' 1 ' I ' I '

[o,]63oo /1,'1

[Fe.Xl] 7892/_ • • _

RADIAL VELOCITY (km s - 1)

Figure 8-4. Line profiles fi_r [01] 6300 (Oct. 9), [Fe X/

(Oct. 5 and 9). [Fe XI] 7892 (Oct. 2, 5 and 9), IS VIlli

9911 (Oct. 5, 9, 12, 15, 19, 27 and Nov. 7)

(flom Ferland et al. 1977).

I _ I • I ' I ' I

i I I I Will

I :"" , I , I , I J I

Figure 8-5. Line profiles fi_r 1011 6300 (Oct. 9), [FeX]

(Oct. 5, 19, 23, and 27), [Fe XI] (Oct. 15. 19, 23 and

27)

(fiom Ferland et al. 1977).
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II.C. PERIODIC LIGHT AND RADIAL VE-
LOCITY VARIABILITY

VI500 Cyg has shown periodic light vari-

ability with a period of 3.3 hours since early

postmaximum (Hutchings, 1979b). The ampli-

tude has remained in the range 0.15-0.5 mag,

while the mean brightness was changing by a

factor of 60,000 (about 12 mag). As we have

seen in Chapter 6, the period decreased by 2%

during the first year from outburst and then

increased slightly and then stabilized. Flicker-

ing with time scale of 100 s was observed, i.e.,

a behavior typical of cataclysmic variables

(Figure 8-6). Ultraviolet observations made

with the photometric Astronomical Netherland

Satellite (ANS) confirm the light variability

with P = 0.14 days (Wu and Kester, 1977).
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Figure 8-6. Blue light curves oI V 1500 Cyg observed
in Sep. 1975. The light curves are m_t aligm'd by time
or by phase.
(J)om Amhruster et al. 1977).

Spectra taken in 1977 (Hutchings, 1979b)
show the characteristic nebular emisssion lines

of [O Ili] 4959 + 5007 and 4363, [Ne II1] at

3868 and 3967 and, in addition, several permit-

ted emissions of H I, He II, N 1II. The permit-

ted lines, and especially 4686 He I1, present

radial velocity variations with a period of 3.3

hours like the photometric period and semiam-

plitude K of 350 km/s. Such a large value of K

in a simple binary model would imply a large

value of the mass function, and therefore--for

reasonable values of the mass ratio--of the
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masses, which is not in agreement with the

typical low masses of novae. Moreover, the

Balmer lines present a different radial velocity

variation than 4686 He II. These observations,

therefore, suggest that they do not represent an

orbital motion only, but rather stream motions

or a combination of the two. A mass function

consistent with the expected masses would

give K = 150 km/s. Hence, the line emissions

appear to originate in fast-moving streams and

confirm the binary nature of the object but do

not reveal anything about the orbital parame-

ters. This is a problem common to several

classes of close binaries, where streams, accre-

tion disk, and envelopes surrounding the whole

system, produce their own spectra with their

own peculiar motions superposed on the orbital
motions.

The system appears to have a mean radial

velocity about 400 km/s more positive than the

mean velocity of the nebular lines, which,

therefore, indicate that the region where they

are formed is an expanding envelope.

A model for explaining the behavior of the

binary V I500 Cyg has been proposed by

Hutchings (1979b). He suggests that the light

variations can be linked to the disk, which is

probably the most luminous element of the

system, and the period changes may be linked

to a precession of the bright and dark side of the

accretion disk, partly due to nonsynchronous

rotation of the white dwarf after the nova out-

burst, in fact, the irregularity of the light curve

suggests that an eclipse of the white dwarf from

the companion is not the most plausible hy-

pothesis.

II.D. ULTRAVIOLET OBSERVATIONS

As we have seen in Chapter 6, V1500 Cyg

was observed with the ultraviolet satellites

ANS and Copernicus. The channels at 1800,

2200, and 2500 A of ANS are free from strong

emissions, and the continuum radiation from

the nova shell is negligible. Hence, the contin-

uum of the hot nova remnant could be observed

and the interstellar reddening estimated from

the dip at 2200 A. A color excess E(B-V) = 0.69



hasbeenfound+nearlyequalto thatdetermined
for55Cyg,whichisnearbyVI500Cyg.From
a comparisionof theintensityof theemission
linesof theBalmerandPaschenseries,Ferland
(1977b)foundE(B-V)= 0.50+/-0.05consis-
tentwith thestrengthof theinterstellarlines.
Thisvaluegivesadistanceof 1.95kpc+/-0.02
kpc,higherthanthevalueof 1.35kpcgivenby
thenebularexpansionparallax.Thelatteris
probablymorereliable,becausemethodsbased
on theinterstellarextinctionandinterstellar
linesareaffectedfromtheirregulardistribu-
tion of thedustandgasin the interstellar
medium.

Copernicusobservations,at a spectralreso-
lutionof0.4A,weremadefromSeptemberI to
September9 (Jenkinset al., 1977).Thespec-
trumwasnotdetectableat k < 2700A. Broad
MgII emissionswereobserved.Afterthe9th,
thenovawasnolongerdetectablewithCoper-
nicus.Theseauthorsdiscusstheabsenceof
measurableultravioletradiationat shorter
wavelengths:it suggeststhattheMg lI lines are

formed by collisional excitation in the outer

layers of the shell at T = 4,000 K, and the ab-
sence of emission lines of the abundant multi-

ionized atoms indicate that the material at

temperature between 25,000 and 50,000 K is

less than 0.001 that producing the Mg It emis-

sion. They point out also that it is strange that

no emission was observable as k 1302 A, corre-

sponding to the O I resonance line, while 8446

O I is a strong emission line. In fact, both these

lines are explained with Ly Beta fluorescence:

Ly Beta emission (1025.72 A, upper E.P. level

12.04 eV) overpopulates the upper level of

1025.72 O ! (upper E.P. level 12.03 eV), and

from that level 3d _ D ° a cascade down to 3p _ P

and then to 3s _ S" explains the emissions at

11287 A and at 8446 A; then a cascade down to

2p 4 _p will produce the 1302 A emission. Now

from the infrared observations of Gallagher and

Ney (1976) and from the ultraviolet spectro-

scopic observations of Jenkins et al. (1977),
one derives that the flux at the Earth of _, 8446

is of about 4 x I(P photons cm 2 s _, while the

upper limit for _, 1302, after correction for the

interstellar extinction is less than 31 photons

cm 2 S I"

These two fluxes are irreconcilable. From

the average luminosity of the central remnant

of novae Strittmatter et al. (1977) estimated the

number of ionizing photons emitted by the cen-

tral source of V I500 Cyg and the optical depth

of Ly Alpha. This is so high that a random walk

of photons in the nebula will be accomplished

in a time long compared with the age of the

nova. For this reason, no strong Ly Alpha emis-

sion is expected, in agreement with Copemicus

observations. For the same reason, one also ex-

pects that the optical depth at 1302 O I is high

enough for the 1302 photons to have an escape

time that is long compared with the age of the

nova at the time of Copernicus observations,

therefore explaining why this emission was not

observable.

II.E. INFRARED OBSERVATIONS

Observations at 2 p.m (Ennis et al.+ 1977)

show that the Brackett Gamma line changes

from absorption to emission about 5 days after

maximum. It is in absorption when the 1-20 _tm

continuum is that of a black body and changes

to emission when the continuum becomes that

typical of free-free radiation.

Starting on September 16, several coronal

lines were detected: [Fe X 6374, [Fe XI] 7892

and [S Vlll] 9911 are present from late Septem-

ber 1975 to January 1976; [Fe XIV] was not ob-

served (Ferland et al., 1977) Hence, according

to them, the temperature was placed between
106 and less than 2 x 106 K. As the coronal lines

became fainter, the [Fe VII] 6087 strenght-

ened, indicating T= 2 x l0 t K. O I and H Alpha

are clearly formed in the same region of the

envelope as indicated by the strict similarity of

the profiles (see Figure 8.3) while the forbid-

den lines of multiionized iron have different

profiles and must be formed in different layers

(see Figure 8.4 and 8.5).

As we have seen in Chapter 6, the infrared

light curves of V1500 Cyg indicate that the

energy distribution until 3.2 days after outburst
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is thattypicalof a blackbodywithT varying
from 104to about5,000K. Later,theenergy
distributioncurvechangesgraduallyfromthat
typicalof a blackbody(approximatedin the
infraredbytheRayleigh-JeansrelationF ,_ v 2)

to that typical of free-free radiation (F - con-

stant). Figure 8-7 gives the flux at the Earth of

Nova Cyg 1975 and, for comparison, the flux of

Alpha Cyg.

The spectral energy distribution from near

UV (as measured by Copernicus) to IR on Sep-

tember 2 is shown in Figure 8-8. The position of

the maximum at about 0.8 I.tm indicates a color

temperature of about 4,000 K.

The maximum in the light curve is reached

at progressively later epochs with increasing

wavelengths, according to the empirical rela-

tion Fmax = 31.31 August 1975 (UT) + 0.681

k (lam).

During the phases of the thick shell, it is pos-

sible to estimate the distance of the nova by the

following considerations (Gallagher and Ney,

1976): the flux at the Earth F z is known directly

from the observations; the flux B_ emitted per

surface unit by the shell is found by fitting the

observed energy curve with the planckian

curve for the corresponding temperature.

Hence, it follows: F_ = 02 B z with 0 angular

radius of the shell. Now 0 = R/d, d0/dt = (I/d)

dR/dt = v/d, where R is the linear radius of the

shell, d is the distance of the nova, and v, the

expansional velocity of the shell. The observa-

tions give 0, d0/dt, and v; hence, the distance d

can be derived. Since the expansional veloci-

ties range from 1300 to 2500 km/s, it is found

1.2 kpc < d < 2.3 kpc (i.e., a value including

that derived by the nebular expansion as well as

that derived from the 2200 dip_see Chapter 8,

Sections II.D and II.G. Figure 8-9 gives the val-

ues of T and 0 and the absolute magnitude com-

puted for a distance of 1.5 kpc. At 3.2 days after

outburst, when the shell is still optically thick

and fits the blackbody curve for T = 5,000 K

from 0.5 to 5 Ixm, the radius (for a distance of 1.5

kpc) is equal to 3 AU and the area of the

shell is 3 x 102_ cm 2. If_ is the mass above each

cm 2 of photosphere, since the shell is optically

thick, but just about to become optically thin, it

10- 12 I_
I f I

_E" 10 13_f_

10 15_

0.5

TXi%\,iX!

1 2 3 4 67810 20
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10 -12

10_13

o

_. 10-14

10 -15

10 -16

0.5 1 2 3 4 67810 20
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Figure 8-7. Energy spectra for V 1500 Cyg neat" maximum and during early decline. A:Aug. 29.8; I:Aug.30.3;

2:Sep.l.l : et:et Cygni shifted by -2.5 mag; 3.Sep.2.0; 4.Sep. 2.4; 5:Sep.4.0; 6:Sep.6.1.; 7.Sep.9.1; 8:Sep.16.2: 9.'Sep.24-

25; IO:Oct.18-21. The transition from Black Body to free-free radiation is evident by comparing spectra no. 3 and No. 5.

(from Gallagher et al. 1976).
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is reasonable to assume z = K:r_ -- I. Hence, the

mass of the ejected shell is about 3 x 102_ x

(z/_:). For temperatures of about 5,000 K and

density of the order of 10 '_ cm 3, k = 0.01. If the

gas in the outer parts of the shell becomes ion-

ized, then k -__2. Hence, the two limits for the

mass of the ejected shell are obtained: i.5 x

102_ g < m < 3 x 103" g; the lower limit is in good

agreement with the value derived by Wolf

(1977) from the Balmer lines.

By combining all the available observations

in the different spectral ranges at different

epochs it is found that the luminosity of V I500

Cygpassed from 5 x 105L ° at maximum to3

x l(P L o IfX) days later, These values give a

bolometric amplitude Amh, . = 3.05 against a

visual amplitude Am = 7.5. Figure 8-10 gives

the infrared light curves. The infrared energy

distribution from August 30 to October 15 is

shown in Figure 6.27c.

Although VI500 Cyg is generally consid-

ered a dustless nova, it shows a slight IR excess

at 10 _m about 100 days after outburst. An ex-

cess is detectable also at 3.5 lam (Ennis et al.,

1977; Szkody, 1977; Tempesti, 1979).

According to Bode and Evans (1985), this

excess is consistent with the heating of dust

close to the nova during the eruption. No sig-

nificant excess is observed for t < 120 days.

Between days 200 and 400, the excess in-

creases monotonically. The dust temperature is

of the order of 200 K. A previous interpretation

of the IR excess at 10 lain was given by Ferland

and Schields (1978a) who attributed it to a INe

II] emission at 12.8 lam; in this case, however,

the excess at lower wavelengths is not

explained. A summary of all the observations

made at the McDonald Observatory since the

outburst through one year later is given by Fer-

land et al. (1986) (see Figure 6.14 ). They found

that the remnant became a dominant contribu-

tor to the optical continuum only one year after

outburst, while it was detectable in the ultra-

violet, with the Astronomical Netherland satel-

lite (ANS) by day 100 (Wu and Kester, 1977).

Both the UV continuum on day 100 and the

optical continuum on day 368 fit the same

Rayleigh-Jeans tail (F _x v 2) indicating: a) that

the underlaying hot body radiates like a black-

body at T > 105, and b) that the hot body main-

tained almost constant luminosity and energy

distribution for at least 268 days. The contin-

uum emission in the optical and infrared, on the

contrary, shows a flat distribution (F --- con-
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Figure 8-10. Infrared light eurves fi_r V 1500 Cyg. A tier day 300from outburst an infrared excess is observed, espe-
cially evident at I0 _m, suggesting the formation _a dust shell.
(from Ennis et al., 1977).

stant) (see Figure 8-11 from Ferland et al.,

1986) dominating the nova spectrum from day

10 to day 100. Ferland et al. show that the gas

at T = 104 responsible for the nebular spectrum

is insufficient to explain this continuum and

suggest that a contribution from the coronal

line region, as well as the central object, must

be added. In fact, from the H Alpha intensity,

one can derive the combined free-free + bound-

free emission of a low-density gas at tempera-

tures t=T/104 for 0.5 < t < 2 : vF(4800 A) /

F(Ho0 = 1.23 t-' e -°'e_3t(see Osterbrock, 1974).

Now Figure 8-12 from Ferland et al. shows that

the free-free + bound-free contribution pre-

dicted from the intensity of H Alpha is lower by
a factor of about 3 than the observed continuum

emission. The hot underlying body gives also a

contribution, which, by comparing the ampli-

tude of the 3-hour-period light variation when

the continuum is produced by the hot body only

with that when the flat continuum was present,

can be estimated to be of 10%. The only other

contributor to the flat continuum is then

bremsstrahlung from the hot gas (T = 10") origi-

nating the coronal lines. Figure 8-13 from Fer-
land et al. shows that the contributions of the

hot body, the nebular, and the coronal gas are

able to explain the observed continuum.
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II.F. RADIO SPECTRUM OF VI500 CYG

V I500 Cyg was observed at different fre-

quencies with different radiotelescopes (see

Figure 6.76 ): at 0.6, 1.4, and 5.0 GHz with the

Westerbork Synthesis Radio Telescope, at 2.7
and 8.1 GHz with the Greenbank interferome-

ter, at 10.5 and 22.5 GHz with the Algonquin

46-meter telescope, and at 90 GHz with the

NRAO I1 m radiotelescope on Kitt Peak.

Seaquist et al. (1980) show that the data are

consistent with thermal bremsstrahlung from

an expanding cloud of ionized gas. Radio and

infrared observations can be interpreted not in

terms of a shell of constant mass, but rather as

an ionized zone moving outward through the
shell.

II.G. THE SHELL OF NOVA CYG 1975

The shell became observable for the first

time on direct photograph on August 27, 1979

(Becker and Duerbeck, 1980). The image of the

nova (Figure 8-14) displays an extension into

the NW quadrant, Since Beardsley et al. (1975)

have excluded the existence of any star

brighter than 21 mag in a circle of 10 inches

around the position of the nova, this feature

cannot be a close companion, but must be iden-

tified with the brightest part of the ejected

shell. Hence, the mass ejection was strongly

asymmetric, a behavior seen in other novae, in

particular, in the fast nova GK Per. The mean

expansion rate of 0.25 inch per year, compared

with the expansional radial velocity of the prin-

cipal spectrum, gives the distance of 1350 pc

quoted above. Speckle interferometry of

VI500 Cyg made by Blazit et al. (1977) 45 days

after outburst gives an expansion rate of 0.26

inch per year in excellent agreement with the

value obtained at a distance of 4 years from the

outburst.

II.H. THE ELEMENT ABUNDANCE IN
THE SHELL OF Vl500 CYG

Ferland and Schietds (1978b) have derived

the chemical composition of the envelope by

comparing the measured intensities of the
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emission lines of the nebular spectrum (ob-

served between days 40 and 120 after the out-

burst) corrected for interstellar reddening E(B-

V) = 0.51 with those predicted for an equilib-

rium photoionization model. The authors ob-

serve that the steady-state assumption is rea-

sonably good during this phase of the outburst,

because the recombination time scale is always

short compared with the rate of decline of the
nova. Several line ratios are indicators of the

electron temperature and electron density,

which vary between about 9500 K and 8400 K,

and between 1.5 x l0 n and 107 cm'% respec-

tively, The model successfully predicts the

intensities of He I, [OIII] and [Ne III1, but un-

derestimates the strengths of INe V] and IFe

VIIi, which may be produced in a mechanically

heated "subcoronal" region. Table 8-1 gives

the abundances derived from the nebular spec-

trum. Moreover, Ferland et al. (1986), using

the determination of electron temperature and

density made by Ferland and Shields (1978b)

derive the abundance of argon from the only

line present in their spectra, 7136 [Ar II1].

Table 8-1. Chemical abundances of V I500

Cyg

Element log N(V 1500 Cyg)/N o

He/H 0.0

C/H i .4

N/H 2.O

O/H 1.3

Ne/H i .3

A/H <0.9

Fe/H 0.1

+/- 0.2

0.2

0.1

0.2

0.3

Hence, helium and iron have solar abun-

dances, while carbon, nitrogen, oxygen, and

neon are strongly overabundant, and argon is

less than a factor of eight of the solar value. The
normal helium abundance is a characteristic

common to several novae and not easily recon-
cilable with the excess of CNO. Coivin et al.

(1977) suggest that the overabundant C,O,Ne

are the result of convective mixing of the outer

layer of the white dwarf with its carbon core.

Helium and iron, on the contrary, would have

the abundance of the material transferred from
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Figure 8-14. Density profiles (left) and deconvolved images (right) of the Bright comparison star, the nova and the

fainter comparison star (fiom top to bottom). North is up, west is to the right.

(])'om Becker and Duerheck, 1980).
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the companion to the white dwarf. The large

abundance of nitrogen may result from proton

capture during the thermonuclear runaway. For

a complete discussion of these suggestions and

theories of the origin of the outburst, see Chap-
ter 7.

II1. V603 AQL - AN HISTORY SURVEY

(written by Selvelli)

III.A. THE LIGHT CURVE

V603 Aql is the brightest member of the

"classical" nova class having reached m V= -1. I

at maximum and having now m V - 11.6.

The light curve of its outburst, which started

near June 9, 1918, was studied by Campbell

(1919). Figure 8-15 illustrates the light curve

of V603 Aql in the first 100 days after maxi-

mum. The "very fast" nova character of V603

Aql is based on the very short (2-day) time

interval between the prenova phase and the

maximum phase.

It is noteworthy that the maximum luminos-

ity phase lasted a few hours only and was an-

ticipated by a premaximum halt. The first de-

cline phases were quite smoothed, with t3 of the

order of 10 days, and were followed by the os-

cillation phase, which lasted about 100 days

and was characterized by the regularity of the

oscillations with P-11 days. The last decline

phases were instead characterized by a con-

stant or weak variation in the light curve.

The luminosity of V603 Aql during the out-

burst phases has been studied by Payne-Gapos-

chkin (1941, 1957). Since the ejected shell is

optically thick and Teff 104 K near maximum_

the visual maximum luminosity provides a

good estimate of the peak bolometric luminos-

ity; the bolometric correction is small at this

stage.

Figure 8-16 (from Gailagher and Starrfield,

1976) shows that if the maximum luminosity is

to be maintained for a time of 100 days after
maximum, the bolometric correction must be
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Figure 8-16. Smoothed I_hotographic light curves qf l.....

603 Aql and allowed range of holometric absolute

magnitudes. (From Gallagher attd Star(field, 1976).

higher than 6 magnitudes. Gallagher and

Starrfield interpreted this as an indication of a

decline in total luminosity, although the total

amount of energy radiated under the assump-

tion of constant L_,_ of the order of L .... was es-

timated at about 8 x 1045 erg, a value which is

approximately three times the total amount of

kinetic energy and is similar to that found for

slow novae (-10 times). Only the assumption

Mb,,t -7 during the interval from 10 to 100 days

after maximum would give a ratio radiative

energy/kinetic energy larger than one. if no

bolometric correction is applied, this ratio is

only one-tenth.

III.B. THE SPECTRUM IN OUTBURST

Objective spectra of the pre nova were re-

ported by Cannon (1920). The energy distribu-

tion seemed to indicate a rather high tempera-

ture, but there was no evidence of emission

lines. Several sharp absorption lines were seen,

probably of hydrogen, and the spectral type

was classified near Class A I. V603 Aql was

also observed spectrographically during the

first outburst phases. Absorption lines at maxi-

mum were violet-shifted by about -1300kin s _.

This spectrum was followed by the principal

absorption spectrum, which showed similar

features (resembling an F I star) but with higher

velocities Vou' --1500 km s _ , thus producing an

aspect of duplicity in the lines. Nearly at the

same time with the presence of the principal ab-

sorption, bright emission lines of low excita-

tion (H, Nal, Call, Fell, etc.) appeared as su-

perimposed to the absorption spectrum. This

principal emission was gradually replaced by

lines of increasing ionization and excitation.

Ultimately, emission lines of NIII, NellI, OIII,

Hell, etc., appeared in the emission spectrum.

Gallagher and Starrfield (1976), using se-

lected spectral features reported by Wyse

(1939), have outlined the increasing level of

ionization with the decline in luminosity (Fig-

ure 8-17). Lines from ions which appear shortly
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Figure 8-17. The appearance times for lines flom ma-

jor ions are compared with the visual light curve,hn

V603 Aql. All qf the _&ta are /)'om 143,se (1939). The

pattern t!/ im'reasing excitation with declining light is

observed in most novae attd suggests t/rat ultravioh,t

energy redistribution following ma._imum conmumlv

O('('Hrs.

(from Gallag/u'r and Sturrfield. 1976).

after maximum have excitation and ionization

potentials of the order of 20 eV or less, while

later features require much higher potentials

(>50 eV).

The new system of lines of the diffuse-en-

hanced spectrum showed absorption features

which were violet-shifted by about -2200 km

s ], almost twice as much as in the premaximum

spectrum. An even higher outflow velocity was

present in the Orion Spectrum, which showed

absorption lines (typically Hel, NII, Oil) with

velocities up to -4000 km s _ Figure 8-18).

Payne-Gaposchkin (1957) has given a de-

tailed description of the complex behaviour of

the various absorption and emission systems.
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As the nova faded, forbidden emissions be-

came prominent, with a progressive strength-

ening with respect to the permitted ones.

McLaughlin (1960), has provided a compre-

hensive description of the postnova emissions

of V 603 Aql, including a detailed description
of the behaviour of the Hell _, 4686 Paschen

line emission. Nitrogen flaring, a secondary

fluorescence originated t¥om Hell Lyman al-

pha _, 303 was related to the increase in inten-

sity of the 4686 emission line and was evident

from the appearance of two wide and hazy
emissions at 4100 /_ and 4640 /_. It is remark-

able that, as noted by Wyse (1940), most of the

nebular light in 1919 and 1920 came from the

OIII _. 4959-5007 doublet and, in second place,
from the Nil _. 6548-6584 doublet.

Payne-Gaposchkin and Gaposchkin (1941),
from the absolute intensities of some lines and

from the distance derived from the nebular ex-

pansion, have estimated the line luminosity for

Km_sec

2500

30O0

3.5(_

400O

45C_

v6(]3 Aq ull(_,

\

31 AUG 11o

Figure 8-18. Radial velouities of Orion absorption sys-
tem of V 603 Aql. correlated with light curve.
(from Friedjung. 1966b).

H delta (log H_ 36.65, Am=3, and 35.85, A
m = 6 with Am counted from maximum) and

for the IOIill _. 5000 emission (36.99 at maxi-

mum).

Electron temperatures have been calculated

from the usual OII1 ratio (5007 + 4959) / 4363,

and values of about 6500 K were derived. Esti-

mates of the electron density, based on the

surface brightness of H delta and the nebular

radius, gave values ranging from 1 x 109 cm 3

in the early phases, to 1 x 106 cm -3 in the early
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nebular stages. With the assumption Nc-NH+ ,

a lower limit to the mass of the shell ejected in

the outburst was estimated in 102_ g.

Friedjung (1966b) has given a set of deter-

minations of temperatures and radii of the

ejected shell in the first months after the out-

burst. The estimates of the temperature were

made using the methods developed by Zanstra,

Ambartzumian, and Stoy and data from the lit-

erature and from archives. From this study,

Friedjung found support in favour of an inverse

T-R correlation. A clear relation between the

characteristic velocities of the diffuse-en-

hanced and Orion spectra and the correspond-

ing radii was also found (Figure 8-19).

II1.C. THE STRUCTURE OF THE EJECTED
SHELL

The expansion of the ejected shell and the

nebular structure has been studied quite care-

fully by various authors. About 4 months after

maximum, Barnard (1919) detected a nebular

shell with a diameter on the order of I" that ex-

panded at a uniform rate. Wyse (1940), in his

protracted photographic and spectroscopic

monitoring, showed that the expansion rate was

at about 1"00 per year during some 20 years.

Wright (1919), from a series of exposures made

by rotating the spectrograph, was able to dem-

onstrate that the expanding shell was not

spherically symmetric. From studies on spec-

trograms taken at Lick Observatory with the

slit at different position angles, Baade (1947)

proposed the presence of a system of three rings

(equatorial belts) in parallel plans, and of two

very large polar caps (blobs, condensations)

that were apparently ejected in opposite direc-

tions along a common symmetry axis pointing

nearly (16 °) toward the sun.

Weaver (1974) has made the most exhaus-

tive study on the development of the shell.

From the slit-spectrograph images taken with

the slit in a number of different position angles,

he reconstructed the structure of the ejecta. The
model he derived describes the nebula in terms

of cones of emitting material and two polar

jets. The axis of the cone system and the line of



87

0
0
_A
iii
>

(.5
0
_J

86

85-

84

-0.2

[]

I

-0.1

I

0.0

1

0.1

[3

Z_m
x

V
A

x

x

x x
x

o

I I I I

0.2 0.3 0.4 0.5

LOG RADIUS (solar radii)

o

o o
÷

+

O , &A
+

I I I I

0.6 0.7 0.8 0.9

18

X

E 14

a
uJ
DE
< 12

O
O9

_ _0

0
._1
u.I
> 8
Z
0
rr
0

+

4L÷ 0
+

x

o
_K

0 0 0
+

6 ,- Diffuse enhanced velocity
0 i i L

0.0 0.1 0.2 0.3

x

z_

A

E]

I I I [ I

0.4 0.5 0.6 0.7 0.8

RECIPROCAL RADIUS (solar radii)

Figure 8-19. a) The relation of Orimt velocity to radius.ft. V 603 Aql Jog t included between less than 0.80 (black tri-

angles) and larger than 1 60 (Black squares) and 1.73 (white squares), h) Relation between the velocity squared and

reciprocal radius. Symbols for different epochs are the same as in a)

(from Friedjung, 1966b).

429



sightarenearlyperfectlyaligned(angleless
than1° ).Figure8-20givesasketchof themor-
phologyof theejecta.

To the Sun

Aql

a

a

t"
..oO°

P

a

er

81

Figure 8-20. Morphological models of the principal

envelopes of V 603 Aql and DQ Her.pp is the polar

axis and aa the equatorial belt. (from Mustel and

Boyarchuk, 1970).

III.D. UV AND X-RAY OBSERVATIONS
OF V 603 AQL

The first UV observations of the old nova

were made by Gallagher and Holm in 1974

(1974), using the 8-inch photometric tele-

scopes of the OAO-2 Wisconsin Experiment

Package (WEP).

They attempted also to observe other quies-
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cent novae, but only V 603 Aql and RR Pic

were positively detected. From the observed

distribution, after correction for E_ v = 0.07,

Gallagher and Hohn were able to estimate an

empirical color temperature of about 25,000 K.

From the observed continuum distribution

and the knowledge of the distance, a lower

limit for the luminosity of about 8 L was
@

derived.

After the launch of IUE, V603 Aql was ob-

served by several authors: Selvelli and Cas-

satella (1981), Drechsel et at. (1981), Lambert

et al. (1980), Duerbeck et al. (1980a), Krautter

et ai. (1981), Ferland et al. (1982a), etc. (Figure

6-36 shows a typical IUE spectrum of V603

Aql.)

The remarkable differences from author to

author in the temperature fitting to the contin-

uum distribution have already been mentioned

in Chapter 6. In this respect, it is worth men-

tioning that Lambert et al. (1980) in the first

IUE observations of V 603 Aql noted a system-

atic disagreement between the OAO-2 and IUE

values shortward of _, 1600 and suggested real

variability in the continuum of the hot compo-
nent.

Duerbeck et al. (1980) reported that the CIV

1550 emission was accompanied by a blue-

shifted absorption indicating mass outflow.

Selvelli and Cassatella (1981) used low-resolu-

tion archive data and original high-resolution

spectra to look for a possible phase dependence

in the continuum distribution (which could ex-

plain the differences in temperatures found in

previous works) and to check the reality of the

presence of P Cyg profiles in the resonance

lines of CIV and SilV reported by Krautter et

al. (1981). One of the results of this study was

the suggestion of the presence of rapid vari-

ations in the far UV and "eclipse-like" effect in

the near UV for the high excitation lines, which

seemed correlated with the orbital phase.

The high-resolution SWP spectrum was

slightly underexposed. However, three emis-

sions were clearly present, i.e., SilV 1400, CIV



1550, and Hell 1640. They all present the same

kind of profile, which appears to be a wide and

shallow emission centered at the nominal

wavelength. The half-half widths indicate ve-

locities of around 900 km s _ that cannot be

ascribed to the orbital motion, which has lower

velocities. It is remarkable that this high-reso-

lution, deep-exposure spectrum (420 minutes)

has not revealed any additional emission line

besides the three emissions mentioned above

(see also Figure 6-42) that are clearly evident in

the low-resolution spectra. The absence of

(sharp) intercombination emissions was inter-

preted as an indication that the nebular shell

had essentially vanished.

The main shortcoming of this study was in

the inhomogeneity of the data: the IUE spectra

used were taken at different epochs, and phases

were reconstructed assuming Kraft's (1964)

period. Drechsel et al. (1981), instead, made an

extensive set of observations monitoring the

nova during almost two complete cycles, one

entire IUE shift. A total of 8 SWP and 2 LWR

spectrograms were obtained. UV (and optical)

changes with a period in agreement with that of

Kraft were detected and interpreted as related

to the phase of the binary system. The emission

line spectrum consists of two distinct groups:

quite strong resonance lines such as SilV, CIV,

Allll, MglI, and much weaker semiforbidden

lines such as NIV 1486, NllI 1750, ClIl 1908,

and CII 2326. The presence of these latter lines,

if confirmed, would indicate that the system is

surrounded by highly diluted (nebular) matter.

The strongest feature is the CIV resonance dou-

blet _, 1550. Phase-dependent variations (by a

factor of up to two) in the line intensity are

clearly evident, especially for CIV, SilV, Hell,

and NIV 1486. The most pronounced changes

occur near maximum light at about d_ = 0.5. The

intensity is instead minimum near orbital phase

0 (Figure 8-21). The continuum variations with

phase are smaller than the 0.3 mag observed in

the visual (FES) light-curve. The fact that the

variations in the optical continuum, UV contin-

uum, and UV line emission are strongly corre-

lated suggests that the main source of UV and

optical radiation are located in about the same

region of the system. This behaviour is in

agreement with the optical photometric obser-

vations of Panek (1979), who showed gray

variations in the light-curve. "Eclipse-like"

effects (near phase 0.0) are not evident in the

semi forbidden lines. This was interpreted as an

evidence for the presence of diluted gas sur-

rounding the whole system. These results are in

disagreement with those by Selvelli and Cas-

salella (1981) who did not show presence of

nebular lines.

A study similar to that of Drechsel et al. but

focused on the LWR range (which was covered

by two observations only in that study), was

performed by Seb,'elli and Cassatella (1982).

Five LWR spectra at low resolution were taken

in a close sequence, to monitor the phase-re-

lated variations (since they covered about one

orbital period), and one high-resolution [,WR

spectrum was taken in order to provide correct

identifications and information on the emission

lines shape. Actually, no stellar lines, either in

emission or in absorption, were detected in the

high-resolution spectrum, probably partly be-

cause of the fact that it was underexposed by a

factor of about two, and mainly because the

possible features, being very broad and shallow

as in the high-resolution SWP spectrum de-

scribed previously by Selvelli and Cassatella

(1981), were not detectable. The five low-reso-

lution spectra, on the contrary, have permitted

an easy estimate of the presence or absence of

spectral features. These data indicate thai the

emission lines are probably formed in the ac-

cretion disk and thai there is no trace of any

nebular contribution from the envelope ejected

at the time of the outburst. (Figure 8-22)

About three fourths of the emission lines

have been identified or tentatively identified as

belonging to permitted, semiforbidden, and

forbidden transitions of medium-high ioniza-

tion species. The strongest emissions are Mg II

)V 2800, Oli1 _. 2320, OII _. 2470, AI 11 )V 2669,

probably Fe Xll )v 2568 and 2578, O I!I )v 3047

and a few unidentified lines. In addition, all the

lines of the He II Paschen series are present,

together with the O Ill lines produced by the

Bowen flourescent mechanism involving He

Ly_ )v 303.
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Figure 8-21. a) Two selected IUE short wavelength

spectrograms of V 603 Aql obtained at orbital phase

0.52 and during the supposed eclipse at phase 0.94.

Pronounced variations of the strengths of C IV 1550,
Si IV 1400 and He II 1640 as well as N IV / 1486 - but

in the opposite sense are evident, b) Comparison of the

visual light curve (obtained with the Fine Error Sensor

on board of lUE), at the bottom, with the emission line

flux of four ions (top) and uhraviolet continuum light

curves (center). c) IUE short wavelength spectrograms

obtained during more than two complete orbital

_ycles. d) optical observations obtained with the ESO

3.6 meters telescope. Variations in the line strengths

(e.g. He I1 4686) and line profiles (e.g, H gamma) are
noticeable.

(from Drechsel et al, 1980: Figs a, d; Drechsel et al.

1981: Figs b, c.)
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Selvelli and Cassatella (1982) have attrib-

uted to coronal lines many emission features

lacking any other reasonable identification.

Actually, of the dozen coronal lines reported

in the near UV range of the solar spectrum, all

but one (Fe XI 2649) might be present in V603

Aql.

Figure 8-23 reports the values (not corrected

for reddening) of the total flux below the con-

tinuum (i'e" f32(w)-2(,x)F2C d2 in ergs cm -2 s4) of the
Mg II emission intensity (erg cm -"s t) and of the

visual magnitude derived from the FES counts

as function of the orbital phase (seeTable 8-2).

For the ephemeris, the value of P--0.1383d

and the time of the principal minimum given by

Herczeg (1982) have been assumed.

There are variations both in the lines (by a

factor of -- 2) and in the continuum (by a factor

of -- 1.3) in spectra taken in close sequence. It

is questionable, however, whether these vari-

ations are intrinsically phase-related. The ob-
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Figure 8-23. The variations observed in 5 spectra

taken in strict sequen('e, in the/ring waveh, ngth regirm.

served maximum of the Mg I! emission and of

the continuum around phase - 0 might be at-

tributed to a transient phenomenon. This might

explain the disagreement with the visible data

and the previous far UV observations.
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TABLE 8-2.

VALUES OF VISUAL MAGNITUDE

Mv(FES), MG I1 EMISSION, AND TOTAL

FLUX BELOW THE CONTINUUM, FOR V

603 AQL AT DIFFERENT ORBITAL

PHASES.

Phase*

Mgll Emission Total Flux

(10 _ erg cm-'s_) below the

continuum

m (FES) (10 _-"erg cm 2 s _)

0.281 12.11

0.325 5.75 235

0.479 12.03

0.522 6.70 253

0.678 12.00

0.722 5.10 252

0.899 12.04

0.942 11.00 285

1.097 12.09

1.140 10.25 242

Surprisingly, the maximum in the near UV

total flux and in the Mg II emission intensity

occurs near phase = 0 (principal minimum in

the visible), while at the other phases, the val-

ues of the quantities under study do not differ

very much from each other.

Ferland et al. (1982) have made a quantita-

tive analysis of the physical conditions in the

continuum and line-emitting region of the sys-

tem. After correction for E(B-V) = 0.07, the

continuum follows a power-law close to the

h -'-_-_ value expected from a "standard" disk. If

the distance is of 380 pc, the total luminosity is

of the order of 5 x 1034 erg s-]. If this luminos-

ity is generated in the accretion disk, the mass-

accretion rate can be derived: 1_-10 _ gr s ]_

A study of the emission lines from ions like

H, He, C, N, O, has led the authors to suggest

*+=0 corresponds to the principal minimum of the visible

light curve. The phase associated with m (FES) is that corre-

sponding to about 2 minutes before the beginning of the

exposure. The phase associated with the spectral quantities is

that of mid-exposure. (4 June 1981, GMT = 23y t)gm 35s =
JD 2444760.4652).
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that these lines are formed in a circumstellar

"corona" with size comparable with the binary

separation. The "corona" is heated by the hot

radiation from the accretion disk. The large ra-

dius of the "corona" is required by the emission

measure of the gas and by the presence of the

NIV 1486 line, which has a critical density of

about 10 m_. Ferland et al. (1982a) pointed out

that several features of the model, in principle,

were open to direct observational test. For Hell

(produced across much of the corona) they ex-

pected a broad line with a fill-in center, while

for lines such as C IV (produced only across an

annulus), they expected a narrower, saddle-

shaped profile.

Ferland et al. (1982) studied also the optical

spectrum of V 603 Aql (Figure 8-24). The hy-

drogen emission lines show a flat Balmer dec-

rement:

Ha=0.99, Hp=l.00, Hy=0.86, Hal=0.92,
etc.
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Figure 8-24. The lower panel shows the observed opt/-

cal - ultraviolet contim,_us energy distribution. The

upper panel shows the energy distribution after apply-

ing an interstellar reddening correction E(B-V)=O.07

mag. This reddening correction, which is consistent

with the object's galactic position, brings the contin-

uum to the form predicted for an optically thin accre-
tion disk.

(from Ferland et al, 1982a)



This anomalous behavior was interpreted in
terms of emission from a small volume of dense

gas (10 L_ cm _) on the surface of an accretion

disk. The presence of N IV 1486 (N _"' = 10mS)

however, is disturbing.

II1.E. V603 AQL IN QUIESCENCE: HOW
MANY PERIODS IN V 603 AQL ?

The binary character of V 603 Aql was dis-

covered by Kraft (1964), by using high-resolu-

tion Palomar coude spectrograms at 38 .&/ram.

From the RV changes in the Hy and H_5 emis-

sions, he determined a period of 3h 19.5"

(0.13854 days). The RV curve has 2K = 75 km

s _, and the emission lines have an intrinsic

broadening of approximately 240 km/s (half-

half width). The low 2K value suggested low

system inclination, and, therefore eclipses or

occultation effects were not expected.

The first photometric observations never

covered one entire period: they just revealed

strong flickering activity. (Walker, 1963:

Robinson and Nather, 1977)

Time-resolved spectrophotometry (Panek,

1979) has shown that differences of 0.3 mag
over time scales of-10 minutes are common in

V603 Aql. These variations are gray.

Rahe et al. (1980), during an 8-hour observ-

ing run with the IUE satellite, monitored the

optical photometric behavior of V603 Aql by

using the FES instrument (5.l-second integra-

tion times and about 20 points in the curve,

separated by intervals of about 20 minutes).

The light curve they found (Figure 8-25) re-

veals the presence of three pronounced minima

separated by a time interval, which is in agree-

ment with the spectroscopic period found by

Kraft. The presence of these minima was tenta-

tively interpreted in terms of a partial eclipse of

the accretion disk around the white dwarf by

the late main-sequence component, or as an oc-

cultation of the hot spot by the disk itself.

Slovak (1981) made high-speed photometric

observations of V 603 Aql starting on 15 June

1980, 5 days after Rahe's observations. The
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Figure 8-25. Visual light curve obtained with the FES

(/)ore Drechsel et al, 1980) and RV curve (only H

gamma and tt delta have been measured) (from Dre-

chsel et al, 1983bL

new data were reduced, using a cross-correla-

tion analysis, and power spectra were calcu-

lated to search for low-amplitude rapid oscilla-

tions, of the kind detected in DQ Her and V533

Her.

During the five observing runs, no evidence

for regular eclipses or any other periodic fea-

ture was found. (Figure 8-26) This fact led to

the conclusion that the variations reported by

Rahe et al. (1980) may arise from the formation

of transient features in the accretion disk.

This failure in the attempt to find regular

eclipses was interpreted as a support to the in-

dications of low system inclination derived

from the spectroscopic data of Kraft and from

the study of the nebula by Weaver (1974).

Similar arguments were also adopted by Cook

(1981) to reject the eclipse explanation of the

minima observed in the light curve.

Surprisingly, new photometric observations

by Haefner ( 1981 ) in summer 198 I, revealed a

repeating hump structure in the light curve. A

periodogram analysis gave a period of
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Figure 8-26. Light curves of V 603 Aql obtained dur-

ing several nights, with a resolution of 6 s pet" point.
Solid arrows denote predicted time of minimum light.

On July 25 a hump occurs rather than an eclipse.
(from Slovack, 1981 ).

0.144854 days, about 5% larger than the spec-

troscopic one. Haefner suggested that periodic

features only can be identified when the mean

light level of the system is low (V-I 1.9); oth-

erwise, they might be masked by a strong flick-

ering activity. In this respect, it is worth re-

marking that the observations by Slovak indi-

cated V-11.4. New observations were made by

Herczeg (1982) who also used data obtained in

previous works in his attempt to clearly define

the photometric period. He found, beyond any

doubt, clear evidence of minima in the light-

curve and suggested 0.13816 days as the best

value for the period, leaving, however, a possi-

bility for P = 0.13822 and P = 0.13828. Also, he

pointed out the considerable observational dif-

ficulties produced by the strong photometric

disturbances the star presents.

More recently, Haefner and Metz (1985)

have presented a careful analysis of the data

taken in mid summer 1981 with the ESO 50 cm

telescope during long observing runs. The pre-

liminary results presented by Haefner (1981)

were confirmed: hump-like features instead of

eclipse-like features, and a period of 3_ 28.8

(0.144854 days), which is about 10 minutes

(5%) larger than the spectroscopic one IKraft 3"

18m.9].

No periodic variations during the whole ob-

serving time interval, which covered 117 peri-

ods, were detected. The observed hump struc-

ture (Figure 8-27) in view of the low inclination

of the system, cannot find an easy explanation.

Haefner and Metz have made also polarimetric
observations. The measurements of linear and

circular (P-2.7 10-4) polarization revealed an

unexpected, new period of 2 _ 48".

There are, therefore, at least three periods

that characterize the various observing modes

of V 603 Aql.

On the basis of these results, Haefner and

Metz (1985) have proposed a detailed model of

intermediate polar, combined with a transitory

eccentric disc to explain the different perio-

dicities present in the system. A magnetic field
of the order of l06 Gauss was derived from the

degree of circular polarization.

Optical observations obtained in 1980 and

with the ESO 3.6 m. telescope (Drechsel et al.,

1983b) together with previous data taken by

Kraft, have been used to determine more pre-

cisely the spectroscopic period. (Figure 8-28).

The power-spectrum analysis yielded P =

0a.1381545 in good agreement with the early
determination of Kraft: P = 0.13854.
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Figure 8-28. a) Radial velocity curve of the primat3'

component of V603 Aql (crosses H Beta and H Gamma

emission lines measured by Drechsel et al, 1983h1,

while the dots are earlier measurements hy Kraft. b)

equivalent widths c_/"He II 4686 vs the phase. The

dashed line is the RV curve shown in a).

(from Drechsel et al, 1983h).

IV. CP PUP

(written by Bianchini)

IV.A. INTRODUCTION

CP Pup is one of the two brightest galactic

novae ever observed; the other one is nova

Cygni 1975. It reached photographic magni-

tude 0.5 on JD 2430675, rising from fainter

than 17th magnitude. A large outburst ampli-

tude, a very rapid development, though with

modest expansion velocities, high terminal

excitations with the simultaneous presence of

very low excitation lines, such were the first

peculiarities observed in nova Puppis 1942

(Payne-Gaposchkin, 1957). At light minimum,

the nova has been found to be a close binary

system having an unusually short orbital period

below the 2-3 hour period gap for all cataclys-

mic variables (Bianchini et al., 1985a,b;

Warner, 1985; Duerbeck et al., 1987).
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We shall report here some relevant data for

this nova at outburst and at minimum.

IV.B. THE OUTBURST

The outburst light curve of CP Pup shows a

smooth early decline and a transition phase

without oscillations (Figure 8-29). The star

rose from fainter than 17th magnitude and so,

at least after the rise, it had the largest range re-

corded for a nova. Now the old nova standstills

at m-15 The nova at maximum reached abso-

lute magnitude -11.5 (Duerbeck,1981), so that

it radiated for a large fraction of the outburst

with a luminosity that surpassed the Eddington

luminosity by two orders of magnitude. The ve-

locity of decline of the light curve was as high

as 0.37 mag/day. Such a large velocity of de-

cline has been reached by the more recent very

bright nova Cygni 1975 and also by the far less

energetic recurrent nova T CrB, which also pre-

sented a similar rapid spectral development.

C'2

÷

,, ",,
/ • qlt

Figure 8-29. Above, the light curve of CP Pup 1942 in

the photographic (dots). the visual (small circles), and

the continuum (large circles). Middle. radial velocities

/)om ahsotption lines (dots), red edge (half-filled

circles) and violet edge (also half-filled circles) of

bright lines. Ordinates are shown on the right.

Bottom, logarithm of the ratio H_/HT (dots and broken

line), the ratio V/R for the Hell 4686 (circled crosses)

and for the Balmer lines (circle). Note that the curve of

the Hell lines changes in the opposite sense to those of

the Balmer lines. (from Payne-Gaposchkin, 1957).



Soon after the maximum, the spectra of CP

Pup showed the presence of high-excitation

lines of lOIII1, [CaVIII, [[Crllll, [MnVII,

IFeVIIII, [FeX] and [FeXI]. However, the same

spectra revealed bright lines of IO1] OI, Na,

Call, Si, Fell, and [Fell], indicating the pres-

ence of a stratification of the ionized atoms

around the star. We recall here the fact that

high-excitation coronal lines are observed also

in recurrent novae like, for example, T CrB.

This demonstrates that the velocity of the

photometric and of the spectroscopic develop-

ment and the appearance of high-excitation

emission lines are not related only to the rate of

the energy output by the explosion. In fact,

low-energy outbursts with large expansion

velocities of very thin envelopes should also

favor the formation of high-excitation lines.

Moreover there exists only a very general cor-

relation between the velocity of decline and the

expansion velocity of the envelope of classical

novae. Actually, the velocities derived from

the diffused-enhanced spectrum and the Orion

spectrum of CP Pup were not particularly large:

-1600 km/s and -2000 km/s, respectively.

When the envelope became optically thin, we

observed a doubling of the nebular lines, due to

the layers expanding towards us and those

expanding in the opposite direction. These

emission lines yielded an even lower value of

the expansion velocity: 1100 km/s, The veloc-

ity derived from P Cyg profiles was of 1400

km/s. These differences can be attributed to the

fact that the expansion velocity of the observed
nebula is often lower than that derived from the

blue-shifted absorption features that character-

ize the so called continuous wind-ejection

phase of the decline. It is then possible that the

bulge of the matter lost by the nova was not

principally formed by the high-velocity wind

produced during this relatively well-extended

phase of the nova outburst.

However, the spectral development of CP

Pup was really very fast. The diffuse-enhanced

spectrum appeared four days and the Orion

spectrum, five days after light maximum. The

absorption spectrum was recorded for only fif-

teen days: it disappeared at the beginning of the

transition phase, when the spectrum of a nova

starts changing from a more stellar to a purely

nebular one. This could suggest that the ex-

panding envelope of CP Pup was not very mas-
sive.

The behaviour of the V/R reversals for the

Balmer lines and for the Hell _,4686 emission is

peculiar. The V/R ratio of the Hell line changes

with time in the opposite sense to that of the

hydrogen lines, but with the violet edge always

the stronger. All this is shown in Figure 8-29.

The V/R ratios for the H lines are initially

larger than unity and become unity at approxi-

mately the end of the transition phase, just
when the Hell _, 4686 emission becomes visible.

It is then evident that hydrogen and Hell lines

are produced in different regions around the hot

central object. All these phenomena are actu-

ally the consequence of a unique basic physical

process, that is the dilution of the expanding

envelope and the consequent variation of the

optical depths and the velocities of the regions

that are responsible for the emission of the

different ions. In 1947, the nebular spectrum

was still strong, with very structured emission
lines.

IV.C. THE NEBULA

The expanding nebula was for the first time

observed by Zwicky (1956) when it had a ra-
dius of 2.78". Distance determinations based

on several methods, including the nebular par-

allax, have been discussed by Duerbeck

(1981), who gives the revised value of 15(X) pc,

based on new photographs of the nova (Duet-

beck and Seitter, 1979). The nebula is shown in

Figure 8-30. Its structure is, according to Wil-

liams (1982), "moderately symmetric, reminis-

cent of a wheel with spokes emanating from the

center and extending out to a roughly circular

rim." Williams (1982) has given a detailed

spectroscopic study of the nebula when it was

14" in diameter. Two hours of exposure spectra

of the nebula, taken in the blue and in the red

spectral region, are presented in Figure 8-31.

Table 8-3 gives the emission line fluxes.

Williams emphasized two peculiarities of

the spectrum of the nebula.
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Figure 8-30. The shell of CP Pup 1942. Ha + [Nil] CCD image taken by H W. Duerheek with the 2.2 m ESO telescope.

The first is the presence of a broad emission

feature at about _.3600, which might originate
from Balmer continuum recombination of low-

velocity electrons. If it is that, then the tem-

perature of the nebula would be rather low, T =

800 K, for collisional excitation of the ob-

served forbidden lines.

The second observed peculiarity is that the

nebula contains permitted and forbidden lines

of Nil with comparable fluxes. Normally, for-

bidden lines of nebular spectra are 10 3 times the

intensities of the permitted lines. The solution

suggested by Williams is that excitation of all

the levels occurs by recombination. Table 8-4

lists those transitions of the C,N,O elements

which may produce the strongest optical lines

in the recombination spectra of each of the five

lowest ionization stages. Quantitative esti-
mates can be made for the relative abundances

of the H, He, and N elements, since line identi-

fications and fluxes were well determined for

ions of these elements. Assuming that lines are

formed by recombination, and that the reso-

nance lines are optically thin due to the very

large differential expansion velocities for nova

440



I ' E' I , , ' I

_ _- •

.; _ _ __-
i _ z _>z

1 i IL zl

"E 0 i , . , I 1 , , I

35OO aO_3 4500

10

5

0

' 1

I i A

T

55O0 8000 650O 7"COO

Figure 8-31. Blue (top) and red (bottom) spectral

scans of the e.v_anding shell o[CP Pup obtained by R

P Williams. Line fluxes are given in Tahh' I. (From

Williams, 19821.

TABLE 8.3 <*'

EMISSION-LINE Fl.trxEs FOR Tilt,; CP Pt,pt'lS Sttf_i.I.

Measured Line Relative Flux

Wavelength (A,) Identification (HI3=100)

3638 ...................... H i Bahner cont ....

3720 ...................... IO ul X3727 (ISM) 21

3886 ...................... H_+He _X3889 20

3969 ...................... He 13

4101 ...................... HS+N lit X4099 28

4341 ...................... H¥ 26

4380 ...................... N tii k4379 19

4608 ...................... N J'_'_.4606

4640 ...................... N HIk4640 52

4682 ...................... He It k4686 92

4860 ...................... HL3 1(X)

5004 ...................... N H X5005 44

5407 ...................... He n X5411 7

5672 ...................... Nli X5678 9

5875 ...................... He t X5876 19

6233 ...................... He H X6233 (?) 23

6560 ...................... Hot 300:

6580 ...................... IN u] k6584 2(X):

_Fluxes of lines in the red (scan ( X >5300 _)

have been arbitrarily normalized such that Ho_ =

300. The absolute H [3 flux of the portion of the

shell we sampled (-20% of the entire shell) was

F,_ = 5.8 x 10 _5ergs cm: s _.

(*) From Williams (19821

TABLE 8.4 '*_

SI'RON(;I:ST OPlT('AI RE('OMHNATION LINES FROM CNO Ions'

Carbon Nitrogen Oxygen

C I (2p 2 'P):

Triplets: none in visible

Singlets: 2p 2 'P-_D IX98491

C _ 12p 2P'b:

Doublets: 3d2 D-4f "-k_' )v4267

C m (2¢- _S):

Triplets: 4f 'F-5g '(; ),.4069

C _v (2s 2S):

Doublets: 5,/:G 6h zip ),.46611

C _ (ls:_S):

Triplets: 6h _tt_-7i _I ),.4946

N _(2p _ 'Y'):
Quartets: 3s'P-3p_D" _8692

Doublets: 2p' _S"-2D ° [K52(Xl]

N H(2p2 _P):
Triplets: 3p _D-3d _U _ h.51)05

Singlets: 2p: _P-_I) 1X6584]

N m (2p 2 U'):

Doublets: 4.( 2F'-58 2(; X4379

N iv (2s 2 _S):

Triplets: 58 'G_h _/P' _461)6

N v (2s2S):

Doublets: 6h 2_'-7i'-I ),.4946

O _t2p' 'P):
Quintets: 3s'Y' 3pSP X7773

Triplets: 3._ _Y'-3p _P X8446

Quarlers: 3s 4P 3p _D" ;',.4652

Doublets: 2p' _5,"' :17 [X37271

0 m (2p: 'PI:
Triplets: 3p _1) 3d V-" ),.3266

Singlets: 2p 2 'P _111_.5(1(171

O w (2p :P"):

Doublets: 58 2G-6h :tt" X4633

O v (2s _ 'S)

Triplets: 6h 7P-7i 7 X4932

_'The ground-state configuration of each ion is given in parentheses.

(*) From Williams (19821
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shells,Williamsfoundthat,for T=I03K, the
He/Hrelativeabundanceof theCPPupenve-
lopeis0.12.Similarly,it resultedinN/H> 0.1.
Thestrongabundanceof N ischaracteristicof
everyclassicalnova.

IV.D.THENOVAATLIGHTMINIMUM-
THEBINARYSYSTEM

Thepostoutburstapparentmagnitudeof CP
Pupis - 15.0 mag; that is, at least three magni-

tudes brighter than it was before the outburst.

This fact seems to be an exception, since

Robinson (1975) has shown that the luminosi-

ties of novae before and after the outbursts are

essentially the same. It is quite interesting,

however, to note that a similar situation is

occurring also to nova Cyg 1975. Why should

these two very fast novae take such a long time

to reach light minimum? It is possible that after

an outburst, these systems remain for some

time in a perturbed state either due to the sec-

ondary (high mass-loss), or to the white dwarf

component.

CP Pup is a strong soft X-Ray source

(Becker, Marshall, 1981; Cordova, et al.,

1981a) and might be also variable by a factor of

10, at least, with a softer spectrum associated

with a higher flux.

The old nova is now known to be a very-

short-period binary system having the charac-

teristics of the intermediate polar subclass of

cataclysmic variables. This situation might

perhaps explain the suggested excited state of

the system, since one of the characteristics of

intermediate polars is the presence in the sys-

tem of some particular active regions that

greatly contribute to the emitted radiation

field.

Spectroscopic observations of CP Pup were

carried out at the European Southern Observa-

tory, La Silla, by Bianchini et al. (1985 a),

Duerbeck et al. (1987) and Krautter (unpub-

lished data).

The orbital period of CP Pup was independ-

ently discovered by the spectroscopic observa-
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tions performed by Bianchini et al. (1985 a, b;

see also Figure 6-2), and by the photometric ob-

servations carried out by Warner (1985b). Due

to the poor signal to noise ratio of the spectra

and also to the intrinsic strong variability of the
nova, the modulation observed in the radial ve-

locity curve couldn't give a precise determina-

tion of the period. For this reason, Bianchini et

al. used several methods: line baricenters gave

P -- 0.0605 and P = 0.0571 days while line peaks

gave 0.06115 days. The latter fit was probably

clearer than the other ones and was adopted.

High-speed photometry performed by

Warner (1985b) revealed a light curve whose

morphology looks very similar to that of V

1500 Cyg (nova Cygni 1975), having a period

of 0.06614 or 0.06196 days, that is slightly

longer than the spectroscopic one (Figure 8-
32).
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Figure 8-32. The radial velocio, curve fi)r the emission

lines of CP Pup. (from Duerheck et al., 1987).

Duerbeck et al. (1987) used Bianchini et

al.'s (radial) velocities and 29 other ones deter-

mined from IDS spectra taken in December

1982. The spectroscopic period could then be

refined to 0.061422 + 0.000025 days, which is

definitely shorter than the photometric period

(1% and 7% shorter than the shorter and, re-

spectively, the longer period found by Warner,

and close to the original period proposed by

Bianchini et al., see Figure 8.32). Thus, the

behavior of CP Pup reminds us of Su Uma sys-

tems during superoutbursts, when the observed

photometric periods of superhumps are system-

atically different by a few percent from the

spectroscopic (i.e., orbital) ones (Warner,

1985b). Warner and Livio (1987) have sug-



gestedthattheperioddistributionof CVsbe-
lowtheperiodgapischaracterizedbyacluster-
ingof SUUma'sandPolarsintoseparatepe-
riod ranges.Accordingto this scheme,the
observedorbitalperiodof CPPupwouldfall in
oneof theperiodrangesfavoredbypolars.

Theamplitudeof the radial velocity curve is

determined by Duerbeck et al. (1987) to be 91.6

+ 17.6 Km/s (new data only), or 68.3 + 11.0

Km/s (all radial velocity data). If this period

and amplitude are interpreted as orbital mo-

tion, and since no eclipses were observed by

Warner, Duerbeck et al. derive the following

masses:

M (secondary) = 0.14 M o ' approximately an
M7 V star

M (primary) <_ 0.86 M o (all data)

<_ 0.50 M e (new data only).

If the inclination of the system is estimated

to coincide with some nebula features, i = 30 +

5°, then these authors obtain

M (primary) = 0.27 M o (all data)

= 0.12 M o (new data only).

These values are very low, much too low for

any theoretical model of a white dwarf experi-

encing a TNR.

V. GK PER 1901

(written by Bianchini)

V.A. INTRODUCTION

Nova GK Per 1901 has been the first classi-

cal nova to be adequately observed from the

early to the late stage. It was discovered by

Rev. T. D. Anderson on February 21, 1901,

before the light maximum, which was reached

two days later, at visual magnitude 0.2. A de-

tailed comparative description of all the avail-

able observational data of the nova during the

outburst has been given by McLaughlin (1969).

The photometric and spectroscopic evolution

was that of a fast nova, with a speed of decline

of about 0.13 magnitudes per day, an outburst

amplitude of about 13.0 magnitudes, and an

expansion velocity of the ejecta which ranged

from 1000 km/s, for the Absorption I system, to

3800 km/s, for the Orion system. During the

"transition phase", i.e., between 3.5 and 6.0

magnitudes below the light maximum, the nova

presented strong light fluctuations which, un-

like for other novae, were not correlated with

the variations of the Orion absorption system

velocity (Friedjung 1966c). The nebular shell

surrounding the old nova presents an asymmet-

ric shape, probably due to its interaction with a
dense and structured circumstellar environ-

ment in which Bode et al. (1987b) have discov-

ered the presence, around the nova, of an an-

cient planetary nebula remnant. The return of

GK Per to light minimum was complicated by

strong light fluctuations that lasted until the

forties. Later, the old nova settled down to a

more quiescent state, at about magnitude 13.0,

but, since that epoch, the nova has shown occa-

sional well-defined optical outbursts. Several

of the peculiarities of GK Per at light minimum

have been reviewed by Bianchini et al. (1986).

Probably, the most peculiar characteristics

of GK Per as an old nova are its relatively long

orbital period, almost two days (but this is still

subject of controversy), and its dwarf nova-like

behavior, which would place this object be-

tween the classical novae and the dwarf novae

subclasses of cataclysmic variables.

From the beginning, GK Per was

seen to be an exceptional object, and we can

assert today that the study of the many peculi-

arities shown by this nova, both during the

main outburst and at quiescence, has strongly

contributed to the understanding of the nova

phenomenon and of the long-term evolution of

cataclysmic variables.

We wish here to emphasize some of the

more unique aspects of this important nova.

V.B. PECULIARITIES OF GK PER DUR-
ING THE 1901 OUTBURST

Following the chronology of the events, the

first peculiarity can be found by analyzing the

behavior of the nova during the so-called tran-
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sitionphasewhichstartedat 3.5magnitudes
belowmaximum,whenstronglight fluctua-
tionswith a rangefrom 1 to 1.5maganda
periodfrom 3 to 5 dayssuddenlyappeared
(Figure8-33).This phenomenonlastedfor
morethan3 months.At eachminimumof the
lightcurve,thespectrumof thenovachanged
towardsthenebulartypewithaweakercontin-
uumand strongerhigh-excitationemission
linesof [Nellll, 101111NIII, Hell,andtheun-
identifiedbandat X4726.At light maxima,
theselineswereweakeror evendisappeared,
indicatingdecreasedtemperaturesand in-
creaseddensitiesin theline-emittingregion.In
particular,the [Nelll] ).3869andtheIOII1]
X5007emissionshowedvariationsof two
kinds:(1) they invariablyweakenedat light
maximaandbecameverystrongincoincidence
of theminima;(2) at eachsucceedinglight
minimum,theselorbiddenlinesemergedin

-4000

-3000
5.0

greaterstrength,andat eachsucceedinglight
maximum,theirextinctionwaslesscomplete.

At theendoff thetransitionphase,thespec-
trumof thenovawaspurelynebular.

Thesephenomenaarebelievedto becom-
monto all thosenovaethatshowoscillations
duringtheirtransitionphase.

Twoaspectsof theoscillatoryphenomenon
inGKPerhowever,are,quiteunusualandthen
worthyof note.Thefirstis thatthetimeinter-
valsbetweensuccessivelight maximavaried
with timein a sinusoidalfashionandthatthe
period,amplitude,andmeanvalueof thissinu-
soidincreasedwith time.In otherwords,the
lightfluctuationshadaperiodthatwasoscillat-
ing betweentwo extremevaluesthat were
monotonicallyincreasingwith time,asshown
in Figure8-33.
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Figure 8-33. The oscillatm 3' phenomenon during the transition phase of GK Per. Top panneh the light curve of the early
decline shows small amplitude oscillations, which might he correlated with the stronger oscillations of the transition
phase. - Central pannel: the variations of Orion velocities (t'rom McLaughlin, 1969) show that the negative maxima _(
the velocity of the ejected wind occur every two minima of the light curve. - Bottom pannel: the sinusoidal variation with

time of the period qf the oscillations. The period oscillates between two extreme values (dashed lines), which could rep-
resent the Ji_ndamental period and the first overtone t_'an n=3 radially pulsating, slowly expanding (v-2 Kin�s) poly-

trope.
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The secondpeculiarityof the transition

phase of GK Per is that the radial velocity vari-

ations of the highly blueshifted absorption

components of the diffuse-enhanced spectrum

and of the Orion spectrum are not correlated

with the light oscillations in the same way as

for other novae. Friedjung (1966c) showed that

the observed negative Orion velocities and the

calculated photospheric radii--or the magni-

tudes--of some novae during the oscillations

of the transition phase were inversely_i-

rectly, respectively--correlated; the only

known exception seemed to be GK Per (see

Figures 7-14, 7-15, and 7-16). A reanalysis of

the photometric and spectroscopic data has re-

vealed that a correlation similar to that known

for other novae is still possibe for GK Per, pro-

vided that we assume that the negative maxima

of the Orion velocities of this nova have a pe-

riod that is all the time twice that of the light

fluctuations. In Figure 8-33, we can, in fact, see

that the negative maxima of the Orion veloci-

ties occur every two minima of the light curve.
We can also note that the first decline of the

light curve is not smooth but shows small

amplitude oscillations that might represent the

ideal backward extrapolation of the stronger

oscillatory phenomenon of the transition

phase. In fact, both the dependence with time

of the maxima during the early decline and the

correlation between the light minima and the

negative maxima of the Orion velocities seem

to have the same character as observed during

the transition phase. Besides their different am-

plitudes, the principal difference between the

small light fluctuations of the early decline and

the larger ones of the transition phase is the

appearance during the deeper minima of the

latter phase of a genuine nebular spectrum.

Thus, what we probably observe is the com-

bined effect of an oscillatory phenomenon that

starts immediately after the explosion of the
nova and of the constant decrease with time of

the density of the expanding shell. When a

critical value of the density is reached, the

outer expanding envelope becomes optically

thin and the underlying pulsating object, what-

ever it might be, can be finally observed. This

picture could actually agree with the fact that

the two portions of the light curve immediately

betbre and after the transition phase cannot be

reconciled with a unique continuum slope, in

fact, the first decline would fit only the max-

ima, while the second portion of the light curve

seems to follow the slope indicated by the min-

ima.

Since the light oscillation are not correlated

in a simple way with the velocity changes of the

Orion spectrum, we suggest that, at least in the

case of GK Per, the light variations cannot be

directly caused by changes in the velocity of

the continuously ejected optically thick wind,

as it is usually suggested for the other novae.

The fact that the radial velocity changes of the

Orion spectrum appeared rather large, even

during the early decline, when only minor light

oscillations were observed, could support the

previous conclusion. Looking at Figure 8-33,

one could even argue that these light oscilla-

tions start soon after the explosion with a pe-

riod of about 2 days, which is close to the or-

bital period of the underlying binary system.

Thus, the possibility arises that the luminosity

fluctuations are triggered by binary motion

inside a pulsating extended atmosphere, which

is sustained by the radiation pressure produced

by the hot central object. However, we do not

observe the spectrum of such an expanded

object but, more probably, that produced by a

structured optically thick wind. We must then

conclude that the physical mechanism respon-

sible for the particular photometric and spec-

troscopic behaviours so far described is still not

understood.

After the transition phase, GK Per settled

down to a very slow decline towards its mini-

mum light, which was reached several years

later. As we have said, the spectroscopic evolu-

tion was typical of a fast nova with the normal

sequence of slow changes from the nebular

spectrum, where the [OIII] lines are predomi-

nant, to that typical of a cataclysmic variable,

leaving the )_4686 and the Balmer emission as

the strongest lines. A rapid fading of the nebula
relative to the star was observed at the end of

1903 and during 1904, as shown by the weaken-

ing of [Ne IIl] relative to hydrogen and by the

disappearance of [O III]. The historical mini-
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mumof thevisuallightcurveof thenova,my
-15, was reached in 1916. However, as we will

see later on, since the mid-forties, the magni-

tude of the quiescent nova has remained at

about m v -13.1.

V.C. THE PECULIAR EXPANDING NEB-
ULA AND CIRCUMSTELLAR ENVIRON-

MENT

Another peculiarity of GK Per appeared in the

autumn of 1901, when an apparent shell was

seen to be expanding from the star at roughly

the speed of light, such a high velocity being

inferred from the apparent expansion velocity
of the shell and an estimate of the lower limit of

the distance to the nova that does not show any

parallax effect. This shell is distinct from the

shell of gaseous ejecta that was clearly seen

only two decades later. Ka-pteyn first proposed

that the high-velocity shell was due to a "light

echo" from the burst of the nova light being re-

flected by interstellar dust. In all generality,

such an apparently expanding nebula could be

produced by the illumination of a sheet of

material anywhere either beyond the nova or

between it and the earth. In 1939, Couderc

(1939) refined this model, showing that the il-

luminated dust seen by the earth at any time

must describe an ellipsoid of revolution whose

foci are the nova and the observer. On this

principle, Couderc had calculated the location

of the illuminated nebula, which resulted in a

plane sheet placed between the nova and the

observer at about 46 light-years from the nova

and inclined about 45 ° to the line of sight.

Actually, the presence of much circumstellar

material is confirmed by the measures of the

reddening, which can be easily determined

from the intensity of the _,2200 dip observed in

the UV spectra of the nova (Bianchini et al.,

1986). The E(B-V) result was of the order of

0.35. The light echo was mainly visible south
of the nova.

But the important discovery by Bode et al.

(1987b) of an ancient planetary nebula sur-

rounding the old nova has provided the basis

for a new interpretation of the circumstellar en-

vironment and, obviously, of the evolutionary
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history of this interesting close binary system.

The nebula was discovered by analysing sev-

eral Infrared Astronomical Satellite (IRAS)

images of the GK Per region. Extended emis-

sion was detected in both the 60- and 100-pm

bands. Figure 8-34 shows the IO0-lum map of

the region with a superimposed sketch of the

disposition of the mentioned 1901 light-eco.

Bode et al. (1987) have estimated a grain tem-

perature of about 22°K, a density of 2.2g cm

and a total mass of the emitting dust of 0.058

M o , which would imply a large mass for the

gaseous component. Actually, new 21-cm HI

observations performed by Seaquist et al. (in

preparation) led to an HI mass of/>0.6 M o. This

mass is 104- l0 t times greater than that found in

classical nova envelopes. According to Bode et

al. (1987), the _<5 Km s _ expansion velocity of

the gas would suggest that GK Per, as a nova, is

a relatively young object, not much older than

l0 s years, and the 1901 outburst might have

been the first one from this system.

+ 43*30'

03h 30min 29 min 28 min 03h 27rain

RIGHT ASCENSION (1950)

Figure 8-34. IRAS IO0-1_m map c_fthe region around
GK Per. Contours range from 1.5 MJy sr1 to 55 M.ly
sr4. The position of the nova is marked. The inset
shows a 5-GHz radio map of the nonthermal radio
emission _ the central interaction region _ the e.r-
panding shell. Superimposed is also a sketch of the dis-
position of reflection nebulosity from a Lick Observa-
totS plate taken on 12-13 November 1901 (ji'om Bode
et at., 1987b).

The nebula ejected by GK Per during its

nova outburst is also peculiar. It has the shape

of a prolate ellipsoid (Figure 8-35), but with



Figure 8-35. The nebula _f GK Per. The distribution q/rnatter is asymmetric and tile material is concentrated into blobs.
The interaction t_]the shell with the interstellar medium is responsible.fi_r the formation _ the S-W fiont

the matter non equally distributed, the south-

west portion of it being the more luminous. The
material of the shell looks concentrated into

blobs of variable size whose trajectories during

the expansion can be determined by compari-

son of plate images taken at different epochs.

The interaction of the expanding nova shell

with the interstellar medium was discussed by

Duerbeck (1987a) who determined the decel-

eration of the shell and more reliable distance

to the nova: 390 pc. A detailed reconstruction

of the three-dimensional image of the shell of

GK Per was obtained, using more than 200

blobs, by Seitter and Duerbeck ( in "An Atlas of

Nova Shells", in preparation; see also Seitter

and Duerbeck, 1987). Monochromatic images

of the nebula taken by these authors revealed

differences in the distribution of light concen-

trations from the different ions that do not

exclude different chemistries for polar and

equatorial regions as shown in Figure 8-36.

Radio (Reynolds and Chevalier, 1984) and op-

tical (Williams and Ferguson, 1983) observa-

tions revealed the presence on the nebula of

shocks and turbulent processes which are simi-

lar, although far less energetic, to those acting

in supernova remnants. In particular, the radio

map of the shell (see Figure 6-77), shows that
the emission is concentrated in the southern re-

gion of the sky around the nova, in complete

analogy with all the preceeding results. It is

then possible that the interaction of the ejecta

with the interstellar material is, at least par-

tially, responsible for the observed energetics.
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Figure 8-36. The [01111 intage subtracted from the Ho_ + IN 111image of the nebula of GK Per. North is to the left, west
to the top (from Seitter atzd Duerbeck, 1987).

V.D. PECULIARITIES OF GK PER AS A
CATACLYSMIC BINARY

The old nova GK Per was discovered to be a

Close Binary System by Kraft (1964).

The results obtained by several authors have

demonstrated that, among classical old novae,

GK Per can be considered an exceptional ob-

ject for the following reasons:

I) The most probable orbital period is un-

usually long. It has been subject of controversy

(Kraft, 1964; Paczynski, 1965). Bianchini et al.

(1981) found an eccentric orbit (e=0.4) and an

orbital period quite close to that given by Kraft

(P = 1.904 days). A more extended and detailed

spectroscopic study of the radial velocity vari-

ations of both the white dwarf and the K2 sec-

ondary, done by Crampton et al. (1986), re-

vealed circular orbits and a period of 1.996803

days (Figure 8-37). According to these authors,

since no eclipse has ever been observed, the

inclination of the system should be < 73 so that

the most probable masses for the two compo-

nents are M(K2) = 0.25 M and M(WD) = 0.9
o

M o(Figure 8-38). Thus, apparently, only about
one-quarter of the original mass of the K star

remains. This also implies that the secondary is

a slightly evolved star, perhaps stripped to its
helium core.

More recently, this already uncertain scenario

has been further complicated by a reanalysis of

Crampton et al.'s original data carried out by

Kurochkin and Karitskaya (1986). These au-

thors found that the two-day variation itself is

modulated with a period of 0.131623 days. The

amplitudes of these smaller radial velocity

variations are of only 15 Km/s for the absorp-
tion lines and 20 Km/s for the emission lines. If

this shorter period is orbital, the masses of the

two components could be 0.8 M o for the white

dwarf, and 0.6 M o for the K star. Should this

result be confirmed, then the two-day periodic-

ity could be tentatively ascribed to the preces-
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Figure 8-38. A diagram _howing how t/re mas._ of the K

star (M_) varies with the mass _?/ the white dwarf com-

ponent (M. ) for diff'erent values/?/ the imlination and

mass ratio. Since eclipses have not been ohserved, i

<_73 °, and M must he h'ss than the Chandrasekhar

limit, 1.2M d The cross marks the position oJthe most

probable masses of the components (see text),

(J)om Cramper et al., 1986).

sion of the eccentric, e = 0.4, orbit or to the

presence of a third body. Needless to say, fur-

ther detailed spectroscopic observations are

badly required.

2) The nova at quiescence presents an out-

burst activity reminiscent of that of certain

long-period dwarf novae, e.g., BV Cen. As an

example, Figure 8-39 shows the light curve of

the novae in the years 1969-1983. The duration

of the optical outburst of GK Per is one or two

months. The amplitudes range from one to

three magnitudes. The outburst profiles tend to

be symmetric, especially for the largest out-

bursts. The observed recurrence times are vari-

able, but all of them seem to be submuhiples of

2400 days. This sort of quasi-periodicity is il-

lustrated in Figure 8-40. A classification

scheme for the outbursts is suggested in Figure

8-41.

According to Bianchini et al. (1986) and

Cannizzo and Kenyon (1986), most of the ob-

servational characteristics of the optical out-

bursts of GK Per can be explained by disc insta-

bility episodes starting from the inner edge of
the accretion disc. where an unstable transition

region is formed if the mass transfer rate from

the secondary is slightly larger than 10_gs _.

However, as we will see, some observational

facts are suggesting that we are probably still

missing the correct interpretation of the out-
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burst phenomenon in GK Per. The phenome-

nology connected to this important property of

the old nova will be discussed further on in this

review.

3) While most old novae are completely

dominated in the blue spectral region by light

coming from the accretion disc and the bound-

ary layer, the spectrum of GK Per at light

minimum (Figure 8-42), shows also the pres-

ence of a K2 IV-V companion (Kraft, 1964;

Gallagher and Oinas, 1974). We note that the

spectroscopic detectability of the secondary

might be consistent with the assumption of the

longest orbital period, since this would require

the presence of a larger and brighter Roche-

lobe filling secondary. It might be consistent

also with the suggested low mass accretion

rate, since this would imply a relatively low lu-

minosity of the disc, at least compared to that

of other classical old novae (Warner 1987a).
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nova is unusually weak and flat. Bianchini and

Sabbadin (1983) showed that the UV to IR con-

tinuum energy distribution, corrected for E(B-

V) = 0.15, is peaked at )_3600. However, even

applying a correction for E(B-V) = 0.35, as

derived from the UV spectra of the nova in

outburst, the continuum energy distribution in

the UV remains rather flat and approximates

that expected from the standard model of a

semiinfinite accretion disc, i.e., F proportional

to )_ 23_ only during the optical outbursts (see

Figure 8-43). Bianchini and Sabbadin (1983)

suggested that the particular spectrum emitted

by GK Per could be explained by assuming that

the accretion onto the white dwarf is controlled

by a magnetic field that is strong enough to dis-

rupt the inner part of the accretion disc. Bian-

chini et al. (1986) suggested that the probable

value of the mass transfer rate at quiescence is

about 10 _ gs '. This value of the mass transfer

rate is rather low for a classical nova, but it

would correspond to that needed by the theory

if we assume that the outburst is produced by

the disc instability mechanism starting near the

inner edge of the disc and propagating outward

as explained in Section V.E.4.

b)
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Bianchini et al., 1986). b) two color diagram.

451



Z
iii
p-

z

#

1.o -

1.o

o.5 L
41o

KO III

4143 (:, 4226 4272 4289 4325
Fel .... Cal Fel Till Fel

I , I
420O 4300

WAVELENGTH (,/_)

Figure 8-42. Portion of the mean spectrum of GK Per

(upper) compared to that of a KO III star (lower)

(from Crampton et al.. 1986).

- 14,2

- 14.4

- 14.6

- 14.8

- 15.0

- 15.2
-154

_ - 15.6
- 15,8

- 16.0- 16.2

- 16.4

_ - 16.6

J - 16.8

- 170

-172

- 174

- 17.6

- 17.8

- 0.8 - 0.6 - 0.4 - 02 00 02 0.4 0.6

LOG LAMDA _m}

13 729.5 (Oct 26) + 7703 (Dec 5)

Figure 8-43, The UV to IR continuum energy distribu-
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.1, and during the 1986 light peak, corrected for E(B-

V) = 0.35. If we adopt E(B-V) = 0.35 also at light

minimum the continuum in the UV becomes flat (see

text). The )_ :-_Jand the Z _ slopes are also shown.

5) GK Per is a hard x-ray transient. Al-

though the near UV is faint, the x-ray emission
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from the nova is particularly strong and in-

creases during the optical outbursts (King et

al., 1979; Cordova et al., 1981b; Watson et al.,

1985). The hard x-ray luminosity of the old

nova at quiescence is between 2 x 1032 erg s _

(Cordova and Mason, 1984) and 7 x 10_3erg s -t

(Bianchini and Sabbadin 1983). During an

optical outburst, it can amount to about 1034 erg

s t (King et al., 1979; Watson et al., 1985).

6) The old nova GK Per is an intermediate

polar. During the 1983 large outburst, the nova

was observed with the EXOSAT instrument by

Watson et al. (1985), who detected a strong

coherent modulation of the hard x-ray flux of

about 80%, having a period of 351 s. Super-

posed to this, a longer term modulation on time

scales of 0.8+1.5hr was also observed (see

Figure 8-44). The detection of the shorter

highly coherent periodicity would then identify

GK Per as a member of the so called 'interme-

diate polar' subclass of magnetic cataclysmic

variables.

7) Part of the infrared radiation emitted by

the system could come from the outer cooler

regions of the accretion disc. Infrared observa-

tions (JHKL) performed by Sherrington and

Jameson (1983) were interpreted in terms of

the infrared radiation coming from the cool

companion. However, several JHKL flux de-

terminations secured at Asiago and TIRGO Ob-

servatories by F. Stafella and D. Lorenzetti

show that, at some epochs, the nova may vary

on time scales of few hours over a range of a

few tenths of magnitude. As shown previously

in Figure 8-43 the slope of the continuum en-

ergy distribution in the infrared does not

change too much during an outburst and ap-

proximately fits that of the "standard" accre-

tion disc model (a quite different behavior is

observed in the UV). So we argue the infrared

continuum is not principally produced by the

cool secondary component of the binary sys-

tem; most probably, the cooler outer regions of

the large accretion disc, which is formed

around the collapsed object, may give a signifi-

cant contribution to the IR radiation field also
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Figure 8-44. The EXOSAT hard X-ray light curve of
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preparation). The 351 s coherent modulation is ob-
served only in the X-ray region. The flickering oh-
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at quiescence. This would again play in favour

of the longest orbital period.

V.E. THE SMALL POSTNOVA OPTICAL
OUTBURSTS OF GK PER

The most striking characteristic of the light

curve of GK Per at quiescence is its nonquies-

cent character and, in particular, its "dwarf-

nova-like" behavior. The amplitude, duration,

rise, and decay times of the optical outbursts

vary from case to case. As shown back in Fig-

ure 8-41, we can identify four types of out-

bursts. The rise to decay-time ratio is about 0.5

for "small" outbursts, like those that occurred

in 1973 and 1978 ( Am - 1.0 mag); 0.7 for

"medium" outbursts, like those of 1949, 1966,

and 1970 ( Am -1.0 mag), 2.0 for "large" out-

bursts, like those of 1967, 1948 (?), and 1950

(?) ( Am - 2.0 mag); and 1.0 for the "very

large" ones, like those observed in 1975, 1981,

1983, and 1986 ( Am _3.0 mag).

The best studied outbursts are those of 1981,

1983, and 1986. In particular, during the last

one, coordinated UV, optical, and IR observa-

tions have been performed. In the following,

we will discuss some of the main observational

results so far obtained, pointing out those as-

pects of the known phenomenological scenario

that we feel are more relevant to a physical

interpretation of the outburst phenomenon.

Due to the long time intervals between two

subsequent outbursts and the nonstrictly peri-

odic nature of the phenomenon, most of our

knowledge of the long-term light curve of GK

Per comes from visual, photographic, and even

photometric observations by amateur astrono-

mers whose precious collaboration should be

emphasized more often.

V.E.1. ON THE MULTIWAVELENGTH
BEHAVIOR DURING THE OUTBURSTS

The only outburst for which extensive x-ray

monitoring of the nova has been performed is

that of 1978 (King et al. 1979). A reanalysis of

all the available x-ray and optical data showed

that, at least in that case, the x-ray flux reached

its maximum level about 30 days before the rise

in the optical (Bianchini an Sabbadin 1985).

This cannot be simply explained as the effect of

enhanced mass transfer rate produced by the

disc instability mechanism. In fact, for inside-

outbursts, like those observed in GK Per, the V

and the x-ray light curves should present al-

most contemporary rising branches (Cannizzo

et al., 1986).

Another peculiarity of the x-ray behavior is

represented by the fact that during the 1978

one-magnitude outbursts, the luminosity of the

nova in the 2 - 10 KeV range was -- 5 x 1033erg

s L(King et al., 1979), which is comparable to

that observed by EXOSAT, in the same energy
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interval,duringthe larger outburst of 1983,

that is when the star was two magnitudes

brighter than in 1978!

IUE spectra of the nova taken by A. Cas-

satella during the 1986 outburst revealed that,

although this optical maximum, in the visual,

was only 0.2 - 0.3 magnitudes brighter than that

of 1981, the UV fluxes of the continuum were

brighter by a factor of two. The same occurred

for the UV emission lines whose intensities

resulted, on the average, twice as much as those
observed in 1981.

These results are not completely accounted

for by the standard disc instability model. In

general, they only fit in the already proposed

phenomenological scenario in which the out-

bursts should occur mainly in the inner, denser,

and hotter regions of the accretion disc, proba-

bly starting near the boundary layer and the

surface of the mass-accreting white dwarf (see

also Section V.E.4.).

The visual and infrared light curves of the

1986 outburst are shown in Figure 8-45. No

time delay between the two light curves can be

clearly detected. We recall that no time delay
was seen also between the visual and the UV

light curves of the 1983 outburst (Bianchini et

al. 1986). IUE observations of the nova during
the 1986 outburst confirm this result.
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Figure 8-45. Visual, J, H, and K light curves of the
1986 optical outburst. No time delay is observed.

The UV to IR continuum energy distribu-

tions of the nova at quiescence and at the 1986
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light peak, corrected for E(B-V] = 0.1 and E(B-

V) = 0.35, respectively, arc shown in Figure 8-

43. At light maximum, the slope is not too far

from that predicted by the theory for a semi-

infinite disc even in the infrared, suggesting

that the accretion disc of GK Per is quite ex-

tended and that a large portion of it has I_w

temperatures also during an outburst. Alterna-

tively, part of the infrared emission could come

from the secondary, from the cold outer rim of

the accretion disc and from the circumstel[ar

material.

The pattern of the nova in the U-B vs B-V

plane looks rather complicated, as shown by

Bianchini el al. (1986). (Figure 8.4tb).

V.E.2. SPECTRAL CHANGES DURING
THE OUTBURSTS

Few optical spectroscopic observations are

available for the 1986 outburst. More data were

given for the 1981 and 1983 events. A descrip-

tion of the main spectroscopic changes ob-

served in the optical region is given by Szkody

et al. (1985) and Bianchini et al. (1986). The

general trend is that of a strengthening of the

central intensities of the high-excitation emis-

sion lines together with a general decrease of

their equivalent widths. In other words, the out-

bursts occurred more in the continuum than in

the emission lines. Bianchini and Sabbadin

(1982) suggested also that the observed change

in the width of the Hot profile might indicate

that the radius of the outer optically thin por-
tion of the accretion disc is about 8 x 10mcm at

quiescence, and 2 x 10_cm during an outburst

(Bianchini et al. 1982), as required by the disc

instability model. In fact, a burst of the mass-

transfer rate from the secondary would cause

the disc to shrink and not to expand.

A particularly interesting behavior of the

nova during light maxima is suggested by two

optical spectra taken at the Asiago Observatory

during the 1975 and 1983 light peaks. These

two spectra show the presence of an unusual

emission feature at )_4842. This does not seem

to be a high radial velocity component of HI3,

since it is not observed at Ho_; it can be tenta-



tively identifiedastheA10 head,similarto
what is observedin Miras at maximum
(iwanoskaetal.1960).A portionof oneof the
twospectraindicatingtheline is displayedin
Figure8-46.Figure8-47reproducesa cali-
bratedspectrumof thenovaat lightmaximum
takenby Szkodyet al. (1985)in whichthe
X4842emissionmightperhapsappearblended
withthatof Hcj.Weestimatethatthelinehasa
widthof about14/_(FWHM)andanintensity
about0.3thatof HF Thelinehasneverbeen
observedinanyof thespectratakenafterlight
maximaandat quiescence.

=

i I I 1 I

Figure 8-46. Portion of the p/ate spectrum taken with

the 182-cm reflector of the Asiago Observatory during

the light peak of 1975. The lttlllsltal emission at _4842

is shown.
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Figure 8-47. The spectrum qI'GK Per at the 1983 out-
hurst maximum on 1983 August 15 UT (h'om Szkottv et
al.. 1985).

IUE spectra of the nova taken during the

1981 (Bianchini et al., 1986) and the 1986

(Cassatella et al., work in preparation) large

optical outbursts confirm the main character of

the spectroscopic variability already observed

in the optical region. In fact, only the central in-

tensities, and not the equivalent widths of the

principal UV emission lines, follow the out-

burst profile. An exception is represented by

the NIV, SilV, and O111 lines which have a dip

at the very beginning of the rise: whereas, the

UV continuum has a flare. Traces of [NelVI

2423 and OV 1371 are observed during the rise

and the light maximum. In general, the indica-
tion is that of an increase of the ionization

during the rise to maximum. The constant pres-

ence throughout the outburst of the lower-exci-

tation emission lines of [OIIII X2471, [NIII}

_,1750, [N1VI XI487, and Mgll X2800 demon-

strates that a stratification of the ionized ele-

ments is produced at all times. This requires the

presence of an extended circumstellar enve-

lope and /or of an anisotropy in the high-tem-

perature ionizing source. We note, however,

that the Mgll chromospheric emisssion was al-

most absent during the UV spectra of the 1986

outburst, perhaps due to the presence of a much

stronger UV ionizing radiation field. An IUE

spectrum of the nova taken at the 1986 light

peak is shown in Figure 8-48.
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Figure 8-48. IUE spectrum of GK Per during the 1980

light maximum taken by A. Cassatella. The X2200 dip

suggests E(B-V)=0.35. At li,_,,ht minimum the dip seems

to be less protlOltn('ed bill the .';pectl'ltm pre.'_g, nL'; a

rather poor signal to noise ratio so rio conclusion can

be driven.

Analysis of the behavior presented by some

of the UV emission lines can give important in-

formation on the physics of the small outbursts

of GK Per. The intensity ratios of resonance

lines CIV (X1549): NV (KI238):SilV (XI394,

X1403) are changing during the outburst being
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1:0.4:0.28at light minimum,and 1:1:0.4at
lightmaximum.BianchiniandSabbadin(1987)
havetentativelyexplainedthis behaviorby
assumingthatat light minimum,thesethree
resonantlinesareproducedin a smallvolume
aroundthewhitedwarf,havingaradiusof the
orderof thatof theinneredgeof theaccretion
disc,atemperatureofafew104K,andadensity
of Ne> 10t2cm_.At lightmaximum,instead,a
stratificationof theionizationwouldimplyfor
thedifferentionsmuchlargerbut different
emittingvolumes.

Additionalinformationaboutthe physical

mechanism of the outbursts is provided by the

behavior of the OIll _,_3047,3133 and the

[ArIll] _,3109 lines. The !( X3133)/1(_,3047)

intensity ratio is about unity at light minimum,

at the start and at the end of the outburst, and

about 6.0 during the rise and light maximum.

For the OIll lines coming from the excitation of

the oxygen by the Hell _,303.8 Ly, (Bowen

fluorescence mechanism), a typical I( k3133)/

I(_,3047) ratio is about 5.6 (Saraph and Seaton,

1980). Our results suggest that the Bowen fluo-

rescence mechanism might be operating only

during the rise and the light maximum, while at

quiescence and at the start of the outburst, the

OIll energy levels could be selectively excited

by collisions. In the spectrum of February 14,

taken at the start of the 1981 outburst, we ob-

serve a bright emission of [ArlII] _,3109. This

line is virtually absent in all the other spectra.

Seven IUE spectra taken by A. Cassatella

throughout the 1986 outburst (Cassatella et al.,

work in preparation) seem to confirm this par-

ticular behavior of the nova, because the

[ArIlI] k3109 emission is detected only in one

spectrum of the early rise. Since the ionization

potential of ArIII is close to that of OIII, the

ArIII forbidden line should come from the

same region that also produces the OIII permit-

ted line. However, collisions will prevent ra-

diative decays from the ArIII metastable level

for densities Ne > lOs cm -_. For this reason,

Bianchini and Sabbadin (1987) suggested that,

at quiescence and during light maxima, the

Olll emission lines are emitted by regions

where the density is high enough to prevent the

production of the ArIIl forbidden lines. In par-
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ticular, at quiescence, the O!II line-emitting re-

gion should be more concentrated around the

white dwarf and the inner regions of the accre-

tion disc, where densities can be relatively high

so as to prevent the formation of the Arlll for-

bidden line. At the start of an outburst, instead,

the luminosity and temperature of the central

ionizing source increase, and the OII1 ioniza-

tion regions should be immediately pushed

further out, towards lower-density regions,

where the AII! forbidden line can be finally

produced. This situation could be also favored

by the suggested existence in the system of a

very hot region, which explains the observed

high-energy precursor to the 1978 optical out-

burst. However, if we assume that an outburst

can also produce an increase of the wind from

the inner regions of the accretion disc it is then

possible that, soon alter the start of an outburst,

a substantial increase of the wind and, conse-

quently, of the density of the circumstellar

material might again prevent radiative decays
from the Arlll metastable level. We note here

that the lack of a P Cyg profile in the resonant

lines during light maxima can be understood if

we recall that a wind is predominantly emitted

in directions perpendicular to the disc plane

and that it can be observed only if the accretion

disc is seen almost pole-on, i. e., the inclination

of the binary system is rather low.

The 1986 IUE observations of the nova con-

firm the large color excess derived from the

obervations of the 1981 outburst (Figure 8-48).

The E(B-V), derived from the intensity of the

_,2200 dip of the continuum, is about 0.35. It is

not clear, however, whether such a reddening

can be attributed also to the nova at light mini-

mum (Bianchini et al. 1986).

As already mentioned, a rather peculiar dif-

ference was found between the UV spectra of

the 1981 and the 1986 outbursts, that is the

almost total absence in the 1986 outburst, of the

Mgll k2800 chromospheric emission and its

only appearance during the late decline. This

particular behavior is perhaps understandable

for what already has been said. In fact, the 1986

outburst implied much stronger UV, and possi-

bly also x-ray, fluxes than the 1981 one. This



musthaveproducedahigherlevelof ionization
in mostof the line-emittingregionsincluded,
perhaps,theregionresponsiblefor thechro-
mosphericemission,i.e.,thediscor thecool
secondarystar.

V.E.3.SHORTTERMPHOTOMETRIC
VARIABILITYDURINGTHEOPTICAL

OUTBURSTS

High-speedphotometryof theoldnovaGK
Perhasbeenoccasionallyperformedbydiffer-
ent observers(Nather;Robinson;Bianchini;
unpublisheddata),andtheresultwasthatthe
lightcurvecouldappeareithersmoothor flick-
ered.Unfortunately,nosystematicphotometry
hasbeenperformedbeforethe 1983optical
outburst,whenMazehet al. (1985b)and
SteinleandPietsch(1987)triedto detectthe
opticalcounterpartof thex-ray351s coherent
modulationdiscoveredby Watsonet al.
(1985)duringthesameoutburst.Somesmall
amplitude('_3%)periodicitiesin theoptical,to
be comparedwith the 80% modulationob-
servedin thex-rayregion,wereactuallyde-
tected,moreoftenatslightlylargerfrequencies
(360,390,and410seconds),orclosetothe350
speriodbutlastingonlyforafewcycles.High-
speedphotometryof thenovaduringthe1986
outburst(Stagniet al. 1987,workin prepara-
tion)didn'tshowanyclearevidencefortheex-
istenceof suchperiodicities.However,inspec-
tionofthelightcurvesobtainedin thedifferent
nights(anexampleisgivenin Figure8-44)re-
vealsthepresenceof periodicitiesof theorder
of 400secondslastingonlyforafewcycles,as
foundbySteinleandPietsch.

Thisbehaviormeansthattheregionproduc-
ingthe351soscillationsisverysmallandhot,
asexpectedfor theemissioncomingfromthe
polarcapsof arotatingmagneticwhitedwarf.
Thesmalleramplitudeof themodulationseen
in theopticalanditsnonstrictlyperiodicnature
couldbeattributedto thefactthattheoptical
modulationoriginatesfromx-rayheatingof a
featureof theaccretiondiscthatis notcom-
pletelyfixedor stablein therotationframe.

TheEXOSATobservationsof the1983out-
burst(Mazehet al. 1985b)revealedalsothe
presenceof a modulationof thex-rayfluxon
typicaltimescalesof 0.8hour.High-speed
photometryperformedby Stagniet al. during
the1986outburstdefinitelyconfirmsthepres-
enceofsuchamodulationasshowninFigure8-
44.Mazehetal.(1985b)suggestedthatit might
begeneratedbyabulgeinsidethedisc,rotating
aroundthecompactstarwith its Keplerian
velocity,andreprocessingthex-rayoscillation
in theopticalwavelengths.Theobservedperio-
dicityshouldthenbethebeatfrequencyof the
bulgeorbitalperiodandthex-rayone.Alterna-
tively,Duschlet al.(1985)suggestedtheonset
oftheinnerdiscofaregionthatisunstablewith
respectto themassflowratewhichcrossesit.
Thetheoreticaltimescaleof themodulationof
theaccretionrateshouldbeof theorderof 0.7
hour.

V.E.4.THEORIGINOFTHEOPTICAL
OUTBURSTS

Whethertheopticaloutburstsof GKPerare
to beconsideredasagenuinedwarfnova-like
behavioris still a matterof discussion.Obvi-
ously,muchdependsonthedefinitions,classi-
ficationschemes,andalsoon the particular
theoreticalmodelsadoptedto explainthe
dwarfnovaphenomenon.

Twobasiccompetingmodelsareproposed
to explainthedwarf-novaphenomenon(see
alsoChapter4). Thefirstmodel(Bath,1973;
BathandPringle,1981)explainsthebrighten-
ing of theaccretiondiscasdueto a sudden
increaseof the mass-transferratefrom the
secondarycomponent.Thesecondmodelsug-
geststhataccretiondiscsthemselvesmaybe
unstable(Smak,1971;Osaki,1974;Hoshi,
1979;Meyerand Meyer-Hofmeister,1981,
1982;CannizzoeLal., 1982;Mineshigeand
Osaki,1983;Faulkneret al., 1983;seealso
Chapter4.1II).

Wehavealreadysaidthatthediscinstabil-
ity modelcanaccountformostof theobserva-
tionalpropertiesof GK Perduringtheoptical
outbursts.CannizzoandKenyon(1986)pro-
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posedfor GKPeranaccretiondisclimitcycle
mechanismandplacedthetransitionregion,
whichisresponsiblefor theonsetof theout-
burst,at theveryinneredgeof thedisc.Bian-
chinietal.(1986)proposedthatthemass-trans-
ferratewithinthebinarysystemis modulated
by thepresencein thesecondaryof somekind
of activity,andthatthe unstabletransition
regionin theinnerregionsof theaccretiondisc
couldbe formedonlywhenthemass-transfer
ratefrom thesecondarybecomeslargerthan
1016gsI .

Forburstsstartingatsmallradiiof thedisc,
the light curvesobservedat differentwave-
lengthsshouldhavemoreroundedandsym-
metricprofileswith no relevanttimedelays
betweenthem(Cannizzoetal. 1986).Actually,
theoutburstsof GKPertendto besymmetric,
andno appreciabletimedelayhasbeenob-
servedbetweentheUV, thevisual,andthe
infraredlight curves.We knowthatsmaller
outburstshavea moreasymmetricprofilebut,
unfortunately,only their visuallight curves
havebeenobservedsofar.

However,wehaveseenthatsomeobserva-
tionalresultsseemto contradictthestandard
discinstabilitymodel.Forexample,thedetec-
tionof stronghardx-rayfluxespriorto the
onsetof the 1978opticaloutburststrongly
indicatesthat theoutburstoriginatesin the
hottercentralregionsoftheaccretiondiscoron
thesurfaceof thewhitedwarf,butalsocontra-
dictsthetheoreticalpredictionthatnorelevant
timedelayof theoutburstprofileshouldbe
seenat anywavelength.Otherimportantdis-
crepanciesbetweenthetheoryandtheobserva-
tionshavebeenalreadypointedoutin Section
V.A.

TheT = n(4007- 40) days relation (n =

1,2,3,5; as we have seen, 4 seems to be absent),

which gives the observed time intervals be-

tween two consecutive outbursts, suggests the

existence of a mechanism capable of producing

these particular recurrence times. This mecha-

nism could be represented by the presence in

the secondary of cycles of activity that modu-

late the mass-transfer rate and trigger the onset

of the disc instability mechanism with the
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observed recurrence times.

However, we must be very cautious when

applying the standard disc instability model to

the very inner regions of the accretion disc of

GK Per. In fact, the inner radius of the disc is

controlled by the magnetic field and could be

close to the corotation radius (Duschl et al.,

1985). Thus, the physical situation in this re-

gion must be rather complicated, and much

more refined models are required.

V.F. THE LONG TERM LIGHT OSCILLA-
TIONS OF GK PER AT QUIESCENCE

The return of the nova to light minimum did

not occur monotonically but through a number

of strong light fluctuations. The historical light

curve covering the years 1901-1983 is dis-

cussed by Sabbadin and Bianchini (1983). The

main characteristics of the long-term light

curve of GK Per at minimum can be summa-

rized as follows:

I) The preoutburst light curve (Robinson,

1975) shows that the nova was fainter than 13.8

mag tor several years and that it brightened in

the range of 12.8-13.4 mag in the two years just

prior to its eruption. We can then conclude that

the nova had essentially the same luminosity

before and after the explosion and that vari-

ations of, at least. 2 magnitudes were probably

present also in the preoutburst light curve.

2) The historical minimum, my -15, was re-

ached in 1916, but this low luminosity does not

correspond to that of the normal quiescent state

of the nova, which is 2 magnitudes brighter.

Instead, it is surprisingly close to the reddened

apparent visual magnitude of a K2 1V-V star at

the distance of the nova. Thus, we suggest that

GK Per. at the end of the explosive episode,

passed through a sort of mini-hibernation phase
with little or no mass-transfer rate from the sec-

ondary. In fact it is possible that the strong

heating of the deep layers of the secondary by

hard radiation emitted during the nova explo-

sion enhanced the mass loss from the secondary

so much that at the end of the explosion the star

had to shrink inside its Roche-lobe. The light

fluctuations observed at that time should then



bemainlycausedby intrinsicvariabilityof the
secondarywhileit wastryingto fill againits
Roche-lobe.

3) Duringthetwentiesandthirties,thevis-
ual magnitudeof the nova was continuously

fluctuating between magnitudes 14.2 and 12.0

on typical time scales of 40, 80, and 400 days.

During this period of time, we observe an in-

crease of the nova mean luminosity and, during

the forties, the nova was hardly found fainter

than magnitude 13.

4) From 1948 till the present time, we see a

very slow decline of the luminosity; now the

nova spends most of its time in quiescence and,

at intervals of hundreds of days, shows en-

hanced outbursts. As an example, Figure 8-39,

shows the light curve of the nova in the years
1969-1983.

5) The analysis of the data, including the

more recent 1986 outburst, indicates that the

observed optical maxima present a particular

type of semiperiodicity, in the sense that the

intervals, _T, between two consecutive out-

bursts can be expressed by the relation: A T =

n(400 + 40), where n ranges from 1 to 5, al-

though 4 seems to be excluded. Figure 8-40,

presents the suggested relationship and shows

that all points, except the 1981 outburst, which

occurred 984 days after the 1978 one, are

within their error bars of -- 40 days.

6) The plot of the annual mean magnitude in

the period 1917-t986 (see Figure 8-49) might

suggest the presence of a longer term modula-

,2[-
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1920 1950 1980

Figure 8-49. Annual mean visual magnitude o[GK Per

in the years 1917-1986. Fourier attalvsis reveals the

presence _" a quasi peHodici(v at about 2400 days.

Similar periodicities have been .[(_tt/id aL_o in other

Cataclysmic Variables. They could be ascribed to the

£ff?ct qf solar-(vlW cwles in the secondary.

lion of the outburst activity of GK Per. Fourier

analysis revealed the presence of a main cycle

of about 2500 days, but a smaller modulation at

about 1300 days is also possible. This result has

been tentatively interpreted by Bianchini

(1988) as the effect of the presence in the sec-

ondary of a solar-type cycle capable of chang-

ing the mass-transfer rate within the binary

system by a factor of 2.8. The cycle is more

evident in the light curve of the period 1917-

1940, that is, while the nova was recovering

from the historical minimum. This might be

due to the fact that solar-type cycles in CVs are

better observed in systems having low-mass

accretion rates (Bianchini, 1988). During the

seventies and the eighties, the magnitude of the

nova has been around 13.15, still oscillating on

time scales of 1300 and 2600 days between

magnitudes 13.0 and 13.2. However, in the pe-
riod 1950-1988, a slow decline of the out of

outburst-luminosity, at a rate of 0.018 mag/yr,

could also be suggested. We note here that the

observed 2400-, 1200-, 800-, and 400-day,

time intervals between the optical outbursts of

GK Per could well be connected with the 2400-

and 1300-day modulations observed in the long

term light curve of the nova. In other words, it

is probable that all these periodicities are

physically correlated. For example, they could

be explained as the effect of the presence in the

secondary of solar-type cycles. Bianchini et al.

(1986) proposed that since 1950, the accretion

disc of GK Per, due to the particularly low-

mass transfer rate from the secondary, is fully
convective and stable most of the time and that

a cyclic increase of the mass transfer rate from

the secondary is responsible for the onset of the

unstable transition region near the inner edge

of the accretion disc. In particular, a cyclic

increase of the mass transfer rate might be

caused by the periodic alignment of nonradial

g-modes on the surface of the cool star. As a

consequence, several periodicities should be

observed, in coincidence with the periodic

alignments of different groups of sets of modes.

These periodicities should result in submul-

tiplcs of the lime interval between two con-

secutive alignments of all the sets. Such a long

period could be tentatively identified with the

observed 2400-day light modulation.
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VI. V1668CYGNI1978,A MODERATELY
FASTNOVA

(writtenbyHack)

V1668Cyg1978wasdiscoveredonSeptem-
ber9, 1978,independentlyby Collins(1978)
andbyShao(1978)•It is thefirstnovawhose
developmenthasbeenfollowedcompletely,
frompremaximumtothenebularphase,bothin
theultravioletwithIUEandin theinfrared•

VI.A. PHOTOMETRICOBSERVATIONS

It reachedmaximumbrightnessonSeptem-
ber12,20withV = 6.2(Kolotilov,1980)•The
absolutemagnitudeis veryuncertain;fromthe
degreeof interstellarreddening,valuesranging
between-6.2and-8.3arederived(Klareetal.,
1980),whiletherelationbetweenthefastness
of lightdecreaseandabsolutevisualmagnitude
Mv=-11.5+2.5 logt3givesM=-8. In about
3months,thenovadecreasedfromV = 6to V
= 11,andthe energyradiatedamountedto
about3 x 1044ergs.Thephotometricobserva-
tionsinU,B,VbyDuerbecketal.(1980b)show
howthepositionof thenovavariesin thetwo-
colordiagram(Figures8-50and8-51)•The
temperaturesderivedby thecolors,together
with thevaluesof the luminosity,permitto
derivethe loci occupiedby thenovain the
logT-IogRdiagram(Figure8-52),whereT and
R representthe valuesof the pseudophoto-
sphere•Duringthefirst8 daysaftermaximum,
Tvariesfrom8,000K and18,000K,andR,be-
tween100and25solarradii,whilethelumi-
nosityremainsalmostconstant.OnSeptember
12-14,theUV andvisualcontinuumenergy
distributionis similarto thatof anF5star.

Photoelectricobservationsin UBVwereob-
tainedin 1978byPiccionietal. (1984)from2
to 60daysafteroutburst,andotherswereob-
tainedin August1981,whenthemagnitude
wasabout17,showingthepresenceof fluctua-
tionsof a fewhundrethsof magnitude(Figure
8-53)andtimescalesrangingfromafewmin-
utesto 2 hours.

Kaler(1986)hasmadesimultaneousobser-
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vationsin thevisualcontinuum(ymagnitudein
theStroemgrensystem)andwiththewideH
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Figure 8-50. Light and color curves of Nova Cygni
1978.

(from Duelbeck et al., 1980h).
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Figure 8-51. Path of Nova Cygni 1978 in the two-coh_r
diagram, corrected for interstellar extinction. Super-
giant and blackbody sequences, and lines of constant
temperature (in 10_K are shown.
(from Duerbeck et al., 1980b).
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Cygni 1978 during its early decline. Each dot fly, re-
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(fiom Piccioni et al., 1984).

Beta filter w (including the H beta and 10 III]

emissions)• The two light curves separate rap-

idly after 50 days from outburst (Figure 8-54).

At 31t days after outburst, the continuum has

declined by 9 mag while the w emission has

declined by 4.7 mag only. Hence, the decline of
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show the diff?rem'es between the two. Tire decline o[

H_ is nll,'h slower thall that o[the y continuttm.

([)om Kaler. 1986).

the star (indicated by y) is much faster than that

of the nebula where [OlIII is produced.

Polarization measurements have been made

by Piirola and Korhonen (1979) from 6 to 55

days after outburst• They observe an increase

of polarization from 1.6% to 1.9% between

October I and 11, 1978. i.e., in the same period

when the dust formation phase (October 7-15),

indicated by the infrared observations (Gehrz

et al. 1978) started.

VI.B. SPECTROSCOPIC OBSERVATIONS

Spectra obtained near maximum and for sev-

eral weeks after outburst have been obtained by

Kolotilov (1980), Ortolani et al. (1978) and by

Klare et al. (1980). The latter show the full se-

quence of spectra from September 13 to De-

cember 18, giving an instructive example of the

kind of variations occurring in the spectrum of

a nova (Figures 8-55 and 8-56). Three main

emission components at about -500,- 45, and +

500 km/s are observed for several weeks on
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Figure 8-55. 7"he photographic spectrum of V 1668

Cyg." a) from September 13 to October 9. CL = Emis-

sions due to city light, b) The same spectral region,

front October I I to December 18. A P Cyg profile is

still visible on October I l at H Beta, Gamma, and Delta

and is completely disappeared on November 5. The

multiple structure of the emissions is evident.

(from Klare et al., 1980).
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Figure 8-56. The red spectrum of V 1668 Cyg. a) from

September 13 te_ September 25, b) from October 8 to

December 6. CL = emissions due to city light.

(from Klare et al., 1980).

October and November (Kolotilov, 1980), and

more complex structures, indicating the pres-

ence of two main shells expanding at about 500

and 150 kin/s, are evident along the 3 months

after outburst (see Klare et al. 1980). During the

first few days from outburst, P Cyg profiles are

evident, with expansion velocities increasing

from -600 km/s (principal spectrum), to -1700

(diffuse-enhanced) and -2100 km/s (Orion

spectrum).

Comparison of the visual and ultraviolet
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spectrashowthatlinesof comparableexcita-
tionappearat aboutthesameepochsin both
wavelengthranges.Theonlyexceptionis 1641)
HeII (E.P.48.3eV),whichis presentalready
onthespectrumof September19(7thfromthe
outburst),while4686HeII (E.P.50.8eV)only
appearsat November5 (54thfromtheout-
burst), reachesmaximum intensity on
Novermber21,andis still strongonDecember
18.However,thelow-resolutionspectraof IUE
showthatonSeptember19(Figure8-57a),the
O I lineat 1302ispresent.Hence,it ispossible
that theemissionat 1640is due,totallyor
partially,to thesemiforbiddenlineof O 1at
1641.Figure8.57and8.58showthelow-reso-
lutionUVspectrumonSeptember19andOcto-
ber17,1978.Thegreatstrengthof theultravio-
letnitrogenlinesis noticeable.Comparisonof
thenebularspectrumof thenovawiththoseof
planetarynebulaesuggeststhatnitrogenis in
excessin thenovaejectaby a factorof 200
(Sticklandet al., 1981)relativeto thesolar
abundance.

Ultravioletobservationsweremadeon the
earlyphasesof theoutburstbyWuetal.(1978),
whoobservedthenovaonSeptember13.4and
thenfromSeptember15to October8; byCas-
satellaet al. 11979),whoobservedit onSep-
tember14.98andthenonSeptember28and
October10(Figures8-59,8-60,8-61),andby
Sticklandet al. (1979),whoobtainedanex-
tendedseriesof spectrafromSeptemberI 1.7to
March24, obtainingspectrapreoutburst,at
earlydecline,in thetransitionalstageandthe
nebularstage,whichare the objectof the
quotedpaper(Sticklandet al. 1981).From

visualdataobtained on September 12-14, Orto-

lani et al. (1978) estimated a spectral type F5

Ib, which agrees with the UV energy distribu-

tion. On the same dates, the narrow absorption

lines have an expansion velocity of -630 km/s.

On September 16-17, Ortolani et al. observe

only wide diffuse absorptions at the blue edge

of the emissions with velocity of -630, -7011

km/s. On September 28, emission lines of Fc I1,

Cr 1I, and Mn I! are broad and symmetric. The

half width (FWHM) of the Balmer lines indi-

cates a larger expansion velocity, -1550 km/s.

At least another system of emission lines, char-

acterized by an expansion velocity of 525 km/

s is present through the O ili fluorescence lines

at 2688, 2984, and 3333 ,_. The structure of the

Mg 11 resonance doublet (Figure 8.61) is com-

plex, with two absorption components, one

sharp (FWHM = 55 kin/s) and shortward

shifted by - 80 kin/s; the other is broader

(FWHM=270 km/s) and shortward shifted by -

1160 km/s with an emission wing. The pres-

ence of a few resonance lines of Mn II, Fe II,

Mg I+ which are very sharp (FWHM = 30 kin/s,

just slightly above the resolving power of the

IUE camera) and shortward shifted by -95 kin/s,

suggests that an outer shell is present.

The spectrum in October shows a higher de-

gree of excitation and ionization ( as indicated

by the presence of emissions of 1640 He II, Fe

Ill+ Si lIl, O lIl) and the flux in the continuum

is about twice as strong as that in September,

indicating the usually observed shift of the flux

to the ultraviolet, probably due to the unveiling

of the hot object as the ejected envelope be-

comes optically thin.
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Figure 8-57. The ultraviolet spectrum (obtained with IUE) of V 1668 Cyg in the early decline stage (day 7from maxi-

mum). a) short-wave range, h) hmg-wave range.

(from Stick/and et al., 1979).
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Figure 8-59. The absolute energy distribution (not corrected]or reddening) in the IUE long-wave range, two days from

maximum. (from Cassate/la et al., 1979).
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high-resohaion spectrum of September 28. The two
broad Mg 11 lines at -1160 km/s are very broad, with a
half-width at half maximum of 815 km/s.
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VI.C. THE NEBULAR PHASE

The results of the study of the nebular spec-

trum (the first nebular spectrum was observed

on November 6, 56 days after maximum) are

summarized by Stickland et al. (1981). Their

main results are the following. The reddening

derived by the _2200 feature is E(B-V) = 0.40

+/- 0.10 in good agreement with the value de-

rived by the optical observations, which gives

a mean value of 0.35 +/- 0.08. Electron tem-

perature, electron density, and abundances are

derived by the ratios of several nebular emis-
sion lines.

Collisionally excited lines are sensitive to

the electron temperature while recombination

lines are only very slightly dependent on T.

Hence, the ratio between a line formed by re-

combination and another formed by collisional
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excitation of a same ion is independent of the

abundance and of N (if collisional deexcita-

tion is negligible), and dependent only on T. In

the case of forbidden lines, which are present in

the visual spectrum of novae, collisional deex-

citation is not negligible; hence, the ratio of

permitted to forbidden line of a same ion de-

pends also on N. The situation is better in the

UV. Stickland et ai. (1981) used the following

ratios to derive T: C |I 1335/C lI 2326 and CIII

2297/C lII 1909, where the permitted lines are

formed by recombination and the intercombi-

nation lines are formed by collisional excita-

tion. Temperatures in the range 2 x 104 and 5 x

105 K are found. Although this method may

seem the best way to derive the electron tem-

perature, the application of it to planetary

nebulae gives too high values. Another method
is to use the ratio of the recombination line of

1717 N IV to the collisionally excited line 1240

N V. These three ratios give values of the elec-

tron temperature ranging from 9200 to 13,300

K on day 70 from outburst; from 9810 to 15,100

K on day 88 and from 8440 to 13,700 K on day
304.

Electron densities are derived by the ratios
of intercombination lines to forbidden lines.

Since intercombination lines fall in the ultra-

violet and forbidden lines in the visual, lines

from the two spectral ranges must be used. The

ratios 2140 NlI]/ 5755 IN II] and 1663 O III]/

5007 [OtI1]give N =8 x 107 cm _ on day 88.

The abundances of C, N, and O relative to

He are obtained from the UV spectra, while the

optical observations by Klare et al. (1980) have
been used to derive the helium ionization and

the He/H ratio. From these data, it is found that

the ratio of CNO atoms in the shell relative to

H is larger than the solar value by a factor of

30.N, in particular, is enhanced by a factor of
200.

Figure 8-62 shows the UV nebular spectrum.

Starrfield et al. (1978) have predicted that

the rate of energy produced during the runaway

is determined by the initial abundance of the

CNO elements, and that the ejection of a shell

becomes possible only if the CNO abundances
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are substantially larger than the solar abun-

dances, if this mechanism is operative, their

computations show that the ejected material
will have enhanced CNO abundances, and the

abundance of N will be relatively enhanced to

C and O: hence, the results found for Nova Cyg

1978 seem to confirm the theory of the thermo-

nuclear runaway. The total luminosity of the

remnant has an approximate constant value L =

1.7 x I(P L ° from day 13 to day 27 after out-
burst, with an output of radiant energy of 8 x

104_ ergs. A total energy of about 3 x 1044 ergs

has been emitted since the instant of the out-

burst. The mass of the ionized gas in the ejected

shell is about 1()-''_g, and its kinetic energy of

the order of 6 x 1044ergs.

VI.D. INFRARED OBSERVATIONS

Gehrz et al. (1980b) have monitored V 1668

Cyg from the visual band V to 19.5 [am for 120

days after outburst. We have seen in Chapter 6

that V1668 Cyg is an intermediate case be-

tween slow novae-like FH Ser or NQ Vul (type

DQ Her) which exhibit a transition phase with

a deep minimum in their light curve and very

fast novae-like VI500 Cyg. V1668 Cyg pres-

ents an intermediate behavior also in the infra-

red. In fact, infrared observations have shown

that the formation of a thick dust shell in slow

novae explains the deep minimum during the

transition phase of the light curves. While the

majority of slow novae tbrm a thick dust shell,

and fast novae do not show evidence o|" it,

V1668 Cyg gives evidence of the formation of

a thin dust shell. Figure 8-63 shows the infrared

light curves. At the beginning of the expansion

(4.5 days after outburst), the energy distribu-

tion was characteristic of emission from an op-

tically thick photosphere at T = 7400 K (see

Figure 8-64), and the luminosity in this phase

varies as t -' : in fact the flux at a given wave-

length is F z = 4xR2Bz ' where B_ is the Planck

function and R --- vt with v expansion velocity:

it follows that Fo_ t-'. Then the expansion con-

tinues and the envelope becomes optically thin.
Now in a thin shell of constant thickness and

expanding at constant velocity, the flux varies

at t-'. In fact, the radius is still given by R = vt;

the volume of the shell V = 47tR -_ dR =

4rt(vt)-'dR, the density of the shell 19= M/Vo_

t 2. Now, the flux of a thin shell is proportional

to its optical depth and therefore to its density:

it follows F ,_ t 2. Hence, we have a first period
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when the pseudophotosphere emits like a

blackbody at T = 7400 K. The temperature re-

mains constant, and the radius increases until

day 6. From day 6.5 to day 12.5, we have a free-

free emission phase; the energy distribution

gradually evolves into spectrum typical of an

optically thin gas. Since the absorption coeffi-

cient of a thin gas increases with the wave-

length, the gas of a given density behaves like

a thin gas at short wavelengths and as a thick

gas at long wavelengths. Hence, the Rayleigh-

Jeans tail moves toward longer wavelengths as

the shell becomes less dense because of the ex-

pansion. Figure 8-64 shows that on day 6.5, the

Rayleigh-Jeans tail starts at about 3.5 tam,

while on day 9.5, the Rayleigh-Jeans tail start

at about 8.7 pro, and 12.5 days after outburst,

the spectrum has the characteristic shape of

that of a thin shell in the whole observed infra-

red range. After day 35, we observe the start of

the grain condensation phase: the flux in-

creases again with time (see Figure 8-63) and

the energy curve is represented by a blackbody

curve for T = 1100 K (Figure 8-64). Hence, the

angular diameter O_B can be derived by the ob-

served flux at the earth F and the blackbody

flux B: F=B (R/d) 2=B O 2 (Figure 8-65). As
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Figure 8-65. Shell temperature and angular diameter
variations.

(from Gehr: et al., 1980b).

grain growth progresses, the shell flux reaches

a maximum on day 60. After maximum infra-

red flux, there is a decay as the grain growth

ceases and the optical depth of the shell de-

creases due to the expansion: the flux de-

creases again as t= (see Figure 8.63).
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VII. FH SER

(written by Duerbeck)

VI1.A. THE LIGHT CURVE

The outburst of FH Ser (N Ser 1970) was dis-

covered on February 16, 1970 by M. Honda. It

is a moderately fast nova with a DQ Her-type

light curve, fairly similar to the nova XX Tau,

and it is the first nova to be observed in the UV,

optical, infrared, and radio regions more or less

continuously.

The prenova magnitude was V = 16.1. FH

Ser was discovered on its rise to maximum,

which was reached at visual magnitude 4.4 on

February 18.5. The decline occurred smoothly

until about April 16, when it became very dra-

matic. An UBV light curve between outburst

and 1979, making use of all previously pub-

lished data and new ones, is shown in Rosino,

Ciatti, and della Valle (1986) (Figure 8-66, 8-

67, 8-68).

VII.B. SPECTROSCOPY

Spectroscopic studies of FH Ser were car-

ried out by Wagner et al. (1971); Anderson,

Borra, and Dubas (1971); Burkhead, Penhal-

low, and Honeycutt (1971); Walborn (1971);

Hutchings, Smolinski, and Grygar (1971);

Ciatti and Mammano (1972); Stefl and Grygar

(1981); Rosino, Ciatti, and della Valle (1986).

The absorption spectrum shows two main

components, the principal and the diffuse-en-

hanced spectrum. Each of these has two sub-

components. (Figure 8-69). A general increase

of the radial velocity was observed in the first

60 days, i.e., before the onset of dust formation,

with an acceleration of about 0.02 m s-=. The re-

dshifted emission components of the Balmer

and nebular lines lost much of their strength

during the dust-forming phase, and in most

other lines (O II, Fe II, N II...), there were no

detectable redward components (Hutchings

and Fisher, 1973; Rosino et al., 1986). This

indicates that the dust formation occurred in

the shell itself, i.e., the radiation from the re-

ceding layers was severely absorbed by dust in

the approaching layers.
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A coronal line, [A X] 5535, was suspected

by Anderson et al. (1971) on a spectrum taken

August 13, 1970. Rosino et al. (1986) note that

the nova attained its highest degree of ioniza-

tion in March 1971, when they suspect lines of

[Ni VIII] 4446, 4493, [Ni IX] 4332, 4404, [Fe

XIV] 5303, and [A X] 5535. [O Ill] were also

very strong in that phase.

time when the light decreases at shorter wave-

lengths, which can be explained by formation

of dust, which is heated by the central source.

At peak infrared luminosity, the nova can be

described as a spherical shell of unit emissivity

radiating at 900 K, and having a diamcter of 6.5

x 1()_a cm (= 0.07") at a distance of 1.2 kpc,

which may be an upper limit. Data taken from

a more recent study are found in Section VII.F.

VII.C. INFRARED OBSERVATIONS VII.D. RADIO OBSERVATIONS

Infrared observations were carried out by

Hyland and Neugebauer (1970) and Geisel,

Kleinmann, and Low (1970). Geisel et al. pres-

ent light curves for .5, 1.25, 1.65, 2.2, 3.4, 5,

10, and 22 }am, which show clearly that the

luminosity longward of 2 gm increases at the

Radio observations of FH Set by Hjellming

were analyzed by Seaquist and Palimaka

(1977), and by Hjellming et al. (1979). They

assumed a model in which the entire shell is

ejected instantaneously and thickens as a con-

sequence of velocity dispersion in the shell
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(Hubbleflowmodel).Twodifferentgeometri-
cal assumptions,a sphericalmodelandone
consistingonlyof twopolarcaps,leadSeaquist
andPalimakato acceptablefitsto theobserved
temporalchangeof radioradiationat 8.1and
2.7GHz,andto thespectraldistributionof the
novaremnantatagivenmoment(seeFigure6-
76).

Fromthe radiodataanda Hubbleflow
model,amassof 4.3x l0 t M is deducedfore
thesphericalshell,whichhasa temperatureof
l04K anda distanceof 730pc.

VII.E.ULTRAVIOLETOBSERVATIONS

Ultravioletfilterphotometryin therangesof
1430and4250/_, and low-resolution spectral

scans in the range of 2500 - 3600 A was carried

out by the OAO-2 satellite (Gallagher and

Code, 1974). The measurements were obtained

from maximum to the onset of the rapid decline

in April. (Figures 8-70, 8-71, 8-72, 8-73). Some

additional UV lines are identified here.
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Figure 8-70. Flux distribution of FH Ser as measured

by WEP photometry on board (_OAO-2, corrected fi)r

an extinction of E(B-V) = 0.8. Crosses and dots refer

to old and new calibrations (Gallagher and Code

1974).
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spectrometer I on board of OAO-2 for times up to and

including the "flare" in the light curve. The data have

been corrected for the relative response of the scanner

(Gallagher and Code 1974). Additional lines are iden-

tzfied.

VII.F. DISCUSSION

The most important result is that the nova

did not decrease in total luminosity by a factor

of 10 some 53 days after visual maximum, as

implied by the V observations, but continued at

almost constant luminosity. As the visible light

declined, a compensating redistribution in flux
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to the ultraviolet occurred (the correction for

interstellar reddening must be accurate). The

increase in IR flux, e.g., the peak in luminosity

at wavelengths between 2.2 and 22 _tm, which

occurred about 100 d after maximum, is ex-

plained in terms of the observed trend for more

energy radiated at shorter wavelengths, if effi-

cient conversion of far-UV flux in the heating

of grains occurs (see Figure 8-74).

I I f I i |
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0COl _

aA_s AFTER VISUAL _AXIMUM

Figure 8-74. Smoothed energy budget for FH Ser as a
function of time based on ultraviolet, optical and infra-
red data. The data show the postmaximum luminosity
plateau, and the correlation between optical light
curve as well as spectral features and the development
of the thermal infrared excess (Gal/agher and
Starrfield 1978).

A more detailed study, taking into account

infrared observations obtained more than 500

days after outburst, shows that from day 60 to

II1, the light curve can be explained by rapid

grain growth, and from day 111 to 129, by grain

destruction. The luminosity appears to remain

constant until day 200, after which it fell in-

versely proportional with t (Mitchell et al.,

(1985). (See Figures 6-28 and 6-29).

FH Ser is a good example for a nova to be a

constant-luminosity system for a period of at

least 107 sec after visual maximum. The hy-

pothesis that the light curve changes are pri-

marily due to the effective photosphere of the

star, which in term is dominated by the mass-

ejection rate, can explain the observed fea-

tures.

From the strength of the 1S lines, Huchings

et al. estimated a distance of 750 pc, and an

interstellar extinction A = 1.5; thus, the abso-

lute magnitude of the nova was M = -6.5.

VII.G. THE REMNANT

A CCD image of the resolved shell of FH Ser

is given by Seitter and Duerbeck (1987). The

frame taken in mid-August 1984 shows an oval

shell (with some indications of polar condensa-

tions at the end of the larger axis with a size of

3.9" x 3.1". The nebular expansion parallax is

ambiguous due to the variable radial velocity

observed during outburst: a good guess of 550

km/s (also based on emission line widths) leads

to a distance of 825 pc. If the fairly strong ex-

pansion velocity component with II00 km/s is

used, the distance would not be reconcilable

with other distance estimates (see Section

VII.F.).

The orbital motion of FH Ser is unknown.

Vogt (1981) estifiaates from the dereddened

colors of the nova that the orbital period is of

the order of 7.5 hours.

VIII. DQ HER 1934: A SLOW NOVA

(written by Hack)

DQ Her -- a typical slow nova -- has been

observed very extensively, and its history has

been reported in great detail by Beer (1974).
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Figure 8-7.5. The light curve of Nova DQ Her, covering the period 1934-1936. (from Beer. 1935.1936).

This history is very instructive as a detailed

example of the complexity of the spectrum of a
nova.

The magnitude before outburst was about

15. It rose to mag 3 on December 13, 1934, and

reached maximum brightness 10 days later

with mag 1.3. It went back to mag 3 on Decem-

ber 25 and then decreased slowly, with several

oscillations, to reach mag 5 at the beginning of

April, when the deep minimum, which is a

common feature of the light curves of several

slow novae, started. At the beginning of May,

the magnitude was about 13, then the light

increased again, and on June 15, it was about

7.5 and the phase of smooth decline began

(Figure 8-75).

VIII.A. SPECTRAL VARIATIONS DURING
OUTBURST

The premaximum spectrum (Abs.I and

Em.l) changed from type B to type A during the

day of discovery. A second shell (Abs.II and

Era.It) was seen on December 23, a day after

maximum brightness. Then several shells ap-

peared: lIl and IV with multilple components;

shell V, on January 13; shell VI on January 23;

shell VIll, on March 23-25; shell IX, in the

second half of March; shell X, on March 20-24;

shell XI, in January. These shells are identified

by the various systems of lines having the same

radial velocities and are subject to different

interpretations. For instance, McLaughlin, in

his study (1937), identified shells II, Ill = VII,

IV, V, VI, VIII, IX, X, and XI, while in his

successive interpretation of 1954, he identified

just shells I1, II! with several components, IV
and V.

The expansional velocities range between

300 and I000 km/s. Shortly before the start of

the deep light minimum, the emergence of

[Fell] emissions was observed. The same phe-

nomenon was observed in other novae having

the same type of light curve. It is evident that

the expanding envelope has reached a suffi-

ciently low density for the forbidden lines to

appear.

It is interesting to recall that Struve in 1947

expressed the idea that the nebulosity where

[Fe 11] is formed is not purely gaseous but

contains also iron-rich dust particles; Stratton

(1945) suggested that the deep minimum in the

nova light curves is due to an obscuring cloud

formed inside the main outer shell. Now infra-

red observations have shown that these sugges-

tions were fundamentally correct and that a

dust shell is actually formed in moderately

slow novae, just coinciding with the dip in the

light curve.

Before the deep minimum, the emission

bands in DQ Her spectrum started to show two

maxima (Figure 8-76). During the deep mini-

mum (from the beginning of April to the end of

May), the longward components faded and

disappeared, suggesting that the increasing

opacity of the shell permitted the observation

only of that part of the envelope expanding

toward us. At the end of the deep minimum, the

longward emission reappeared.

Interactions between different shells seem

evident from the observational data. These are

described in detail by Beer (1974). Let us con-

sider just one significant example, quoting
from Beer:
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Figure 8-76. DQ Her: the structure oJ'H_ between Januap;v 12. 1935 and March 24, 1935
(adapted from Stratton and Manning, 1939).

"With regard to the later shells McLaughlin

(1947) pointed out that while the atoms of the

shells giving the Orion spectrum were so rari-

fled as to be unlikely to produce any results on

the outer shells, the atoms from the diffuse

enhanced shells llI and IV might overtake the

principal shell II before they get too rarified.

We might observe an acceleration of the prin-

cipal shell and possibly the disappearance or a

retardation of the later component. McLaugh-

lin (1954, p. 135) has discussed in more detail

the problem of shells overtaking each other

with special reference to shell Ill and shell IV

overtaking shell It. The view that the particles

in the different clouds continue to move out-

wards at a constant or slightly increasing speed

is strongly supported by the presence of sepa-

rate narrow components in the second half of

March...Let us first consider the question on

what dale shell III should have collided with

shell II. McLaughlin gives 1934 December 26

as the date of emergence of shell !I. An inde-

pendent study of early plates (Stratton, 1936, p.

148) suggests December 24. Let us accept

December 25. Taking a mean velocity of 317

km/s for 1934 December 25 to 1935, January

15, of 323 km/s for January 15-25, and of 333

km/s for Jamuary 25-29, we find that by Janu-

ary 29 the original particles of shell II would

have travelled outwards 9.6 x l0 s km".

"For shell Iii McLaughlin gives January 8 as

the date of emergence; a study of the Stratton

and Manning Atlas (1934) and of the Cambr-

idge plates suggests January 10. Let us accept

January 9, the date of a maximum in the light

curve. Then with an average velocity of 569

km/s the original atoms of shell 111would have

travelled 9.7 x 10_ km by January 29. We may

note also that the largest increase of velocity of
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shellI1occurred between January 26 and 30. It

seems reasonable to accept the view that shell

III overtook shell 1I on or a little before January

29. McLaughlin's date for this event is January

23 . In support of January 29 we may add that

according to Rottenberg (1952), when an inner

shell overtakes an outer shell, the peaks in the

emission bands should strengthen relatively to
the centres of the bands. Emission maxima in

the Fe 1I bands shortward of H Beta are first

detected on January 29 and rapidly strengthen

though they are visible in the H and K bands of

Ca !1 a few days earlier, suggestive again of

stratification, the Ca II atoms being ahead of

the Fe I1 atoms. We may further note that Ab-

sorption III faded out on January 25 and did not

reappear until February 3".

"This was probably mainly due to the

strengthening of the emission from shell IV:

The emission bands widened on both wings

during the last few days of January. By this

time the leading atoms of shell III and shell IVi

were closely intermingled with each other and

with shell II. Taking the date of emergence of

shell IVi as January 12 and its mean outward

velocity as 674 km/s, the date of collision of

shells III and IVi becomes January 28. By this

date Absorption IVii had become the strongest

absorption".

"1935 January 19 (another maximum in the

light curve) is McLaughlin's date for the emer-

gence of shell IVii and his mean velocity is 800

km/s. Cambridge plates give January 20 and

779 km/s. Both sets of figures agree in giving

February 5 as the date when shell IVii over-

takes shell II, by which date absorption lViii

had become the strongest component. During

the first week of February there was a further

increase of velocity of shell II."

"Absorption IViii was measured on Mount

Wilson plates as early as January 20, but it was

not clearly separated on Cambridge plates un-

til January 28. McLaughlin gives January 24 as

the date of emergence and 900 km/s as the

mean outward velocity. This gives February 10

as the date on which the initial particles of shell

IViii would overtake shell II, a date coinciding

with another increase of velocity of shell II. If

shell V can be regarded as starting on January

27 with a velocity of 1100 km/s, it would over-

take shell II about the same time as shell IViii,

thus accentuating the effect on the outward

velocity of shell II. By this time, however, the

picture is getting very complicated and the con-

clusions to be drawn from these figures must be

regarded with considerable caution".

"Shell VI would not have reached shell ii

before deep minimum : Absorption VIII was

too fitful in appearance and strength to be dis-

cussed in connection with collisions; all that

can be said is that its shell was outside shell VI

late in March, as its absorptions completely

wiped out emissions of shell VI. Shell XIi, if it

started on February 16, would have overtaken

shell II about March 5, and it was in the first

week in March that shell I1 increased again in

velocity. Shell Xlii which emerged early in
March would not have reached shells III and IV

by March 18, and its emission might have pro-

vided the background for the narrow absorption
lines of shells III and IV measured around that

date. But this is a hazardous speculation and

would require the spectroscopically active

region of shell Xlii to be close to the star. All

that can really be said on the idea of shells over-

taking one another is that it is a crude simpli-

fication of "what is really a very complicated

state of affairs, but that it is not inconsistent

with a number of changes during the first three

months of the observed history of the nova."

This decription of the spectral evolution of

DQ Her gives an idea of how complicated the

spectrum of a nova can be and how difficult is

its interpretation.

Spectra taken after 1942 show a strong ultra-
violet continuum due to the central star and line

emission profiles showing double maxima,

clearly indicating that they are produced in the

expanding optically thin envelope. The double

maxima are especially clearly observable for

the hydrogen lines and for 4686 He II (Figure 8-

77).

478



_3727 H), Hy H_

I I I I

i I1tl I: !t Itl I1 1I I I
Figure 8-77. The central star of DQ Her in 1955.
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VIII.B. CHEMICAL COMPOSITION AND
EXTENDED ENVELOPE CHARACTERIS-

TICS

Curve of growth analysis of the absorption

lines in the pre-maximum spectrum (Abs.l) and

in the principal spectrum (Abs.ll) were made

by Mustel (1956, 1958, 1963), by Mustel and

coworkers (1958, 1959, 1965, 1966, 1972), by

Gorbatsky (1958, 1962) and by Gorbatsky and

Minin (1963). The chemical composition of the

absorption-line region at maximum light and at

other dates is practically the same and it is

compared with the average chemical composi-
tion of normal stars. The relative abundance of

metals is normal; instead, carbon, nitrogen and

oxygen are more than 100 times higher than in

normal stars. Although this kind of analysis is

very uncertain, because the intensity of the

absorption lines may be seriously affected by

the presence of the emission components and

especially because the pseudophotosphere is

very far from the condition of LTE, Pottasch

(1967) confirmed this result by measuring the

emission forbidden lines of these elements. He

gave the average abundances of CNO for five

novae including DQ Her, and found an excess

by at least a factor of 10.

Direct photographs of DQ Her taken on July

6, 1945, in the light of [OllI] lines of 4959 and

5007 A and in the light of INI1] lines at 6548

and 6584 A, look very different from each

other. Both are similar to a planetary nebula,

but the image in the light of IOI111 (Figure 8-

78) shows an elongated ring surrounding the
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Figure 8-78. The envelope (_[DQ Her" in the light c_[the /0 111/lines at 4959 A and 5007 A. photographed hy W. Baade
on July 6. 1945 with the M. Wilson 100 inch telescope.

central source, with two slightly stronger blobs

in the direction of the major axis; the image in

the light of [Nil] (Figure 8-79), on the contrary,

shows three strong condensations along the

minor axis. Spectra taken with different orien-

tations of the slit indicate that each line shows

longward and shortward displacements, high-

est at the center of the slit and least at the two

ends of the slit: expansional velocities of the

order of 70 km/s and of 300 km/s were found at

the border and at the center of the expanding

nebula respectively.

Figure 8-80 shows the monochromatic image

of the nova shell surrounding DQ Her in the

light of H Alpha obtained more than 40 years

after outburst. The circles indicate the regions

where the spectra given in Figure 8-81 were

taken (Williams et al., 1978). These spectra are

very similar to those of a typical planetary

nebula. However, certain permitted recombin-

ation lines of C and N are unusually strong for

a typical planetary nebula, while 5007 [OIII] is

not present. A strong emission feature at
3646 A is attributed to the Balmer continuum,

formed at the very low electron temperature
of about 500 K.

Mustel and Boyarchuck (1970) noted that

the 4959, 5007 lines of [OIll] weakened al-

ready during the 1940s and had practically

disappeared by 1950. This weakening was at-

tributed to a drastic decrease of the tempera-

ture, as confirmed by the strong Balmer jump

observed by Williams et al. (1978) indicating

T = 500 K. The gas in the envelope presented

the sharp Balmer jump already in old spectra

obtained in 1956-58 (Greenstein and Kraft,

1959). On the other hand, the emissions of C II

4267 and N II 4237 and 4242 indicate an elec-
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Figure 8-79. Same as Figure 8-78, but in the light of/N II / lines at 6548 and 6584 A.

tron temperature of about 104 K, and their

strength is about one or two order of magnitude

greater than in planetary nebulae.

These data suggest that the shell contains

two regions: one that is hot and the other that

is cold. The C II and NII permitted lines are

pure recombination lines, because they origi-

nate in levels high above the ground state (20

eV), which are not directly coupled to the

ground state by permitted transitions. Hence,
radiative or collisional excitation from the

ground line is very unlikely. Since the emission

coefficients of the C II and NII lines have about

the same temperature and density dependence

as the Balmer recombination lines, the relative

intensities depend only on the relative abun-

dance of the emitting ions integrated over the

emitting region. It is found that C/H -- 10 .3 and

N]H-- 102. Hence, C and N appear to be en-

hanced relatively to H by factors of 20 and 100,

respectively, in comparison with the solar val-

ues. The He abundance derived by 4471 He I

appears to be essentially solar. The determina-
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Figure 8-80. Monochromatic photograph t_'the shell surrounding DQ th'r in the light _['Hcz. The circle_ indicate the re-
gions where ,wectra were obtained, (from Williams et at., 19781.

tion of the oxygen abundance is difficult be-

cause no recombination lines are observable,

but only forbidden lines whose intensity de-

pends strongly on the assumed electron tem-

perature.

Now the problem is to understand why the

electron temperature in the shell is so low as in-

dicated by the sharp Balmer jump and by the

absence of collisionally excited forbidden lines

and why strong (C,N) once-ionized recombina-
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lion lines are present, which indicate a tem-

perature of at least 104.

One can think of various possibilities: the

ionization of the gas is a relic of an earlier

phase, the gas expands more rapidly then it

recombines as suggested by Williams et al.

(1978).

Or alternatively, the radiation field emitted

by a hot central object (e.g., an X-ray source

produced by matter accreting on the white

dwarf) ionizes the shell producing very little

heating, as suggested by Ferland and Truran

(1981). However, both these hypotheses have

been discussed by Ferland et al. (1984), who

were able to show that both are not acceptable.

On the contrary, the large overabundance of

heavy elements indicated by the nebular spec-

trum explains the low temperature and the

strength of the recombination lines.

But let us see in more detail the conclusions

of this latter work. Ferland et al. have used the

infrared, optical, ultraviolet and X-ray obser-

vations of the nebula and the central object.

The composite spectrum is derived by ground-

based observations in the optical and infrared

range obtained by Schneider and Greenstein

(1979) by ultraviolet observations obtained

with IUE and x-ray observations obtained by

Cordova et al. (1981b) with EINSTEIN. Ac-

cording to the generally accepted model, the

continuum is essentially due to the central

object and is shown in Figure 8-82 (corrected

for interstellar extinction). The emission line

spectrum is due to an accretion disk and to the

shell. The UV emissions originating in the

shell are spatially resolved on the two-dimen-

sional image obtained through the large aper-

ture of IUE (10" x 20"). The only feature

clearly originating in the shell is 1335 C II. The

optical emissions and their intensity relative to

H Beta are given in Table 2 of Ferland et al.

(1984). From these data, the authors show that

the recombination time for 4686 He 11, which

has been always present in the nebula spec-

trum, is of the order of 20 years (for T c = 500 K

and N = 100 cm-3). The low value of T is con-
firmed also from the ratio of the two lines of C

II: I (1335)/I(4267). For temperatures included
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Figure 8-82. a) Composite ultraviolet-infrared contin-
uum. The points are reddening-corrected fluxes and
are averages over emission-line free continuum inter-
vals. A line corresponding to a power law with spectral
index -2 is drawn for comparison, it fits well the UV
continuum, h) The dereddened observed continuum,

for E(B-V) = 0,12, corrected for the assumed geometry
(a flat disk seen at im'lination of 80 °) is compared with
the theoretical continuum for an accretion disk with
mass transfer of 10 Izg s1.
(from Ferland et al.. 1984).

between 7000 and 15,000 K, this ratio varies

only from 56.3 and 59.8 (Storey, 1981; Seaton,

1978b). It becomes much lower for T<103.

Since the observed ratio is 9, the value of T =

500 K is confirmed. The value of N is indicated

by the volume of the shell and the H Beta

luminosity. The expansion time for the nebula

is of the order of 50 years. Hence, the continu-

ous presence of 4686 He II indicates that the

gas is being ionized continuously since the

epoch of the outburst, contrary to the assump-

tion by Williams et al. (1978).



The observedcontinuumfor the central
object(Figure8-82b)is verydifferentfrom
thatexpectedfrom anaccretiondiskanda
mass-transferrateof 1017gs-_(Smak, 1982) and

also the following section), and especially the

EINSTEIN observations have shown that DQ

Her (as well as the other quiescent novae) are

not strong X-ray sources. Hence, the model by

Ferland and Truran (1981) is not acceptable.

Instead, photoionization calculations indicate

that for a wide variety of ionizing radiation

fields, the nebula will stay at T< 10 _ K if the

heavy elements are overabundant and the den-

sity low enough.

Actually Ferland et al. (1984) show that the

low density and an enhanced oxygen abun-

dance permit the production of low electron

temperature. Infrared fine-structure lines of

carbon, nitrogen, and oxygen are very efficient

coolants for low-density nebulae. It is shown
that at the ionization conditions and chemical

composition of the nebula surrounding DQ

Her, the IR lines at 88 txm and 52 p_m of [O III]

can easily cool the gas at 500 K. Table 3 from

their paper and Figure 8.83 show the electron

temperature which is reached for different

oxygen overabundances through these two IR
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Figure 8-83. Dependem'e of the electronic temperature
on the gas density in the shell. The temperature falls
dramatically at N<IO00 particles per cc because the
infrared fine structure lines become efficient coolants.
(adapted from Ferland et al., 1984).
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lines. For O/H varying between 10 and 100

times the solar value, the electron temperature

varies between 115(I and 180 K. The graph

gives the electron temperature versus the den-

sity, computed for a given lgl = 10 r gs _ and a

ratio U of photon density to electron density

equal to 10 3. (Here U =Q(H)/4rt r-'Nc.) Q(H) is

the number of ionizing photons emitted by the

central object per second, r is the separation

between the source and the nebula, (which is of

the order of 4 x 10_ cm, as estimated from the

angular diameter of the nebula and the distance

of the system), and N and c are the density of

the gas and the speed of light.

In fact, for a luminosity of the central object

of the order of 1()a-' erg/s, and assuming that the

ionizing photons correspond to wavelength

lower than 3500 A, it follows that L = h v x Q

(H), Q (H) = 7 x 104_, U = 10 _. The observed

photoionizing continuum and the observed

electron density permit us to predict the inten-

sities of the emission lines and to compare them

with the observations (see Tables 2 and 3 of

Ferland et al. (1984)). The agreement is satis-

factory and gives a positive test of this model.

However, the predicted intensities of the 88

Ixm and 52 _m lines should be revealed by the

IRAS observations. Instead, very few of the

observed novae show measurable far IR flux.

The hydrogen emission in the envelope has

been used by several investigators to derive the

mass of the envelope; its value is found to be

included between 1.4 x 10 TM and 102_ g (7 x

106 and 5 x 10 _ solar masses). If we estimate

the mass fraction of carbon, oxygen, nitrogen,

and neon, we find that half of the mass is due to

these elements.

VII1.C. DQ HER PARALLAX FROM
NEBULAR EXPANSION

Observations of the nebula made by Wil-

liams et al. (1978) in 1977 have been used by

Ferland (1980) for deriving the distance of the

nova from the nebular expansion. The distance

derived in 1940, when the size of the nebula

was estimated at about 3", gave d = 230 pcs.

According to Fe,rland, this value was probably

overestimated, because the value derived about
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40yearslaterwas15",implyingadeceleration
on theexpansion.Sucha decelerationdueto
interactionwiththeinterstellarmediumshould
producehightemperaturein thenebula.How-
ever,theabsenceof coronal linesthrough
1940rulesout high temperatures.Ferland
concludesthatthesizeofthenebulawasover-
estimatedin 1940.On this assumption,the
presentsizegivesadistanceof420+/- 100pcs,
i.e.,considerablylargerthanthatpreviously
estimated.This new valueof the distance
bringstheabsolutemagnitudeof DQ Herat
maximumlighttoMv= -7.1+/-0.7andMvon
the broadplateauat -5.9+/- 0.7.With this
revisionof thedistancetheluminosityatmaxi-
mumbecomecloseto theEddingtonlimit for
onesolarmassstar.

VllI. D. THEECLIPSINGBINARYDQ
HER

In 1954,Walkerdiscoveredthatthenovais
aneclipsingbinaryof theAlgoltypewiththe
veryshortperiodof4h39m(Figure8-84).After

AM I I I
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this discovery, Ahnert (1960) measured 27

Sonnenberg plates taken in the years 1930-

1934 in the field of the prenova, and found that

DQ Her was an eclipsing binary with a period

of 0.1932084 days, while, according to Walker,

after the explosion, the period was 0.19362060.

From this value of dP/dt, Ahnert estimates a

mass ejection during the eruption of 1.6 x l0 s

solar masses, two orders of magnitude larger

than that derived by the spectral emissions.

However, we remark that if there are both mass

loss and mass exchange, as is probably the

case, it is impossible to derive them simply

from dP/dt. Moreover, Schaefer and Patterson

(1983), using the archival plates of Harvard

college Observatory, did not confirm the pe-

riod given by Ahnert for the prenova. The

Fourier transform of 50 prenova observations

does not have any significant peaks. According

to them, this is because there are too few obser-

vations with too long exposures to detect the

eclipse. The same authors were able to derive

the mass of the ejecta for another nova, BT

Mon, by comparing its orbital period before

(0.3338010 d) and after (0.3338141 d) erup-
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Figure 8-84. Photometric observations of DQ Her (¢)om Walker, 1956).

486



tion.Theyfounda reasonablevalue,3 x l0 t
solarmasses.However,the variationof the
perioddependsalsoonthemasslostfromthe
systemandnotonlyfrommasstransfer.Hence,
thesedeterminationsarenotveryreliable.

According to the Ritter catalog (1987), the

masses of the two components are 0.62 +/- 0.09

for the hot primary and 0.44 +/- 0.02 tk)r the

secondary.

Spectra of the old nova obtained by Herbig

(see Figure 8.77) in 1955 show that the permit-
ted lines of C II, C llI, Nil, and He II and the

continuum are greatly weakened during pri-

mary eclipse, while the Balmer lines H Alpha,

H Beta, H Gamma, and the forbidden lines of

[OI1] and [OllI] do not change in strength and,

therefore, are formed in an extended envelope

or in an expanding gas unaffected by the

eclipse.

The variation of the emission lines H Beta,

H Gamma, and 4686 He 11 during eclipse has

been studied by Young and Schneider (1980),

who took spectra with an exposure time of 300

seconds at phases included between 0.80 and

0.15 P. The radial velocity curve given by 4686

He II presents the classical rotation distur-

bance: the velocity jumps to +400 km/s before

eclipse, when only part of the eclipsed body

(which can be an accretion disk) that is rotating

outward from us is not yet eclipsed, and to more

than -200 km/s after the eclipse, when the part

of the eclipsed body rotating toward us is al-

ready out of eclipse. The Balmer lines are

eclipsed slightly before the He 11 lines, and go

out of eclipse slightly later, this fact suggesting

that they are formed farther out in the disk.

The UV spectrum of DQ Her has been ob-

served with IUE at various phases. In contrast

to other old novae, it is flat, F )_o.

This flat continuum may indicate that, be-

cause of the high inclination of the system

(according to Ritter, 1987, i = 70 ° +/-17°), we

are observing the outer and cooler parts of the

disk.

The UV line spectrum shows strong emis-
sions of N V and C IV and fainter emissions of

He II and Si IV. All these features vary with the

orbital phase, being all fainter at phase zero. He

I! practically disappears during the eclipse.

We recall that a peculiarity of the photomet-

ric behavior of DQ Her is the presence of coher-

ent oscillations with a 71-second period. These

are low-amplitude sinusoidal variations re-

maining coherent for several years. The recip-

rocal of the period variation (15) _ = 10_ sug-

gests that we are dealing with the rotation of a

solid body, e.g., the white dwarf. Now a pecu-
liar behavior of these oscillations is shown

during the eclipse: at eclipse ingress (phase

0.91), the oscillations begin to come earlier and

earlier, until at mid eclipse, they jump from 90 °

early to 90 ° late, and then gradually come back

to the phase they had originally when the

eclipse ends (phase 1.08). Petterson (1979,

1980) proposes the following model to explain

this behavior: He suggests that the oscillating

light is not coming directly from the white

dwarf, but the illuminating beam on the white

dwarf surface is reflected by the accretion disk.

This is because the phase shift has the same du-

ration of the eclipse itself. Moreover, the vari-

ation of the phase shift can be explained by as-

suming that the reflecting point is located in the

backside of the disk. By assuming different in-

clinations of the orbital plane, the phase shift

and the oscillation amplitude vary (see also

Chapter 4. Section III.F.2).

IX. THE OLD SLOW NOVA T AUR 1891

(written by Hack)

T Aur is the oldest galactic nova for which a

complete record of the outburst is available and

which was observed by photographic spectros-

copy (see Payne-Gaposchkin, 1957, pp. 93-97,

for complete references). The visual magni-

tude range is V = 4.1 and Vm," = 15.8; the ab-

solute magnitude at maximum-derived from

the nebular expansion parallax- is -4.2 or -5.7,

if we assume the expansion velocity equal to

500 or to 1000 km/s -t (i.e., velocities included

between those oberved for the more recent

observed novae; in fact, in 1891 no high-reso-

lution spectra were obtained, permitting us to
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measuretheexpansionalradialvelocity),and
neglectingtheinterstellarextinction.

T AurisverysimilartoDQHer,concerning
boththelightcurveandthespectroscopicap-
pearanceandspectralvariations.It wasthis
strict similaritywhichsuggestedto Walker
(1963)to searchwhetherit wasalsoaneclips-
ingbinarylikeDQHer.Hewassuccessfulin
hisexpectation,,sandfoundthatT Aur is an
eclipsingbinarywith periodof 0.2043786
days.Theeclipsinglightcurveis inmanyways
reminiscentof dwarf novalight curves•Its
maincharacteristicsare:

!) shortperiod,

2) Algoltype,

3) absenceof detectablesecondaryeclipse,

4) asymmetryof the rising branch of the

eclipsing curve,

5) occurrence of a bright shoulder before

and somtimes after eclipse,

6) occasional presence of a depression in the

light curve at 0.7 P,

7) occurence of intrinsic variations outside

of eclipse (Figure 8-85)•

Moreover, the colors B-V = +0.28 and U-B

= -0.64 place it in the same position as dwarf

novae in the two-color diagram and correspond

to the colors of a composite object sdO+dK.

The distorted light curve does not permit

one to find any geometrical solution of the kind

obtained for detached binaries, but only indi-

cates that both components must be small and

dense. Differently from DQ Her, T Aur does

not show any coherent oscillations, but just

rapid flickering.

The spectrum of the nova at minimum was

described by Humason (1938) as dominated by

weak emission lines of hydrogen and He II and

a continuum well extended in the ultraviolet.
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Figure 8-85. a) Light curves of T Aur; h) Composite
light curve. Zero point of the magnitude scale is the

average brightness of the system outside the eclipse.
The phases are computed from the elements derived by
Walker (1963).
(from Walker, 1963).

No other detailed spectroscopic observations

were made since the recent ones by Bianchini

(1980). Study of the variations of the 4686 He

profile along the 4h54m period shows that the

emission lines reach a maximum at phase 0.85,

when the light curve presents, a hump, and a

minimum at phase 0.53 (Figures 8-86 a,b).

Phases 0.0 is at the epoch of the Algol-type

minimum. This behavior indicates the presence

of a hot spot observable in its full size at phase

0.85 in the light of He II. A broad absorption
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(from Biam'hini, 19801.

line is detectable, underlying the emission, and

suggests the presence of an optically thick body

(stellar atmosphere or accretion disk). This

absorption line is more evident around phase

0.00 (Figure 8-86a). Low-resolution (R = 6A)

ultraviolet spectra have been obtained with

IUE (SWP 21454 and 21456, LWP 2268) and

combined together (Figure 8-87). The expo-

sures needed to obtain a measurable signal are

too long to detect spectral variations related to

the phase.

The S/N is low, but it is evident that the flux

increases toward shorter wavelengths, and the

energy distribution is very different from the

flat spectrum of DQ Her, in spite of the other

many similarities of the two objects.

An interesting spectrophotometric study of

the faint nebula surrounding TAur has been

made by Gallagher et al . (1980). The nebula is

faint and has an ellipsoidal ring-like shape with

a major axis of 26" (see Figure 6-68). This

nebula is very similar to that produced by DQ

Her. In both nebular spectra, recombination

lines dominate over forbidden lines: The spec-

trum of TAur presents recombination lines of

once-ionized helium, twice-ionized nitrogen

and oxygen, while forbidden lines are faint

(Figure 8-88).

After correction for interstellar extinction,

the abundance ratio of helium to hydrogen can

be evaluated from the ratio I (5876)/ 1(4861)

according to the relation

N(He') cr,,tj (T) hv_.,, 1(25876)

N(H +) oc.... (T)hv .... l(Hfl)

where the a are the effective recombination-

line coefficients at electron temperature T

(Osterbrock, 1974). Helium is found to be over-

abundant by a factor of 2 or 3. like most slow

novae. Also, nitrogen and oxygen are found

overabundant by factors of 60 and 25 (by

number), respectively, over cosmic abun-

dance.

Like DQ Her, T Aur also shows regions of

the nebula where the electron temperature is

tow, but not so extremely low as in the case of

DQ Her. From the ratio 4651 O II/5007 [O IIl],

a value of T, lower than 3000 K is derived. The

nebula surrounding T Aur has a substantially

lower content of heavy elements than that

around DQ Her, in spite of the great similarity

of the two novae, which is reflected not only in

their light curve, but also in the manner in

which their ejecta have evolved.

The evolution of the nebulae of old novae

presents several problems. For instance, T Aur

and DQ Her extend their similarities in the out-

burst to the similarities in how their nebulae
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Figure 8-87. The low resolution IUE spectrum c_[T Aur, obtained combining the shmt wave spectra SWP 21454 at

phase 0.92 and SWP 21456 at phase 0.74 and tlre hmg wave spectrum LWP 2268 at phase 0.24. Although the noise is

strong, and ttre region 1950-2500 is conq_h'tel.v cb'owm'd in the mfise, it is evident that the./lux increases.[i'om 1600

A toward shorter wavelengths.

(fi'om the IUE data hank).

evolved. RR Pic, on the other hand, is an older

nebula than DQ Her, but presents higher T. and

high ionization. Therefore, it is very important

to follow the development of nebulae of recent
well-observed novae.

X. RR PIC

(written by Selvelli)

X.A. THE HISTORICAL OUTBURST

X

9
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Figure 8-88. The optical spectrum _[T Aur obtained

_' SllFtltlritrk_ several spectral scaprs The.flux units are

10 z,, erg_ cm 2 s l A J. (f)m_r Gallagher et al., 1980)

The outburst of RR Pic was first noticed by

R. Watson, on May 25, 1925, when the star

reached magnitude 2.4, while the maximum

(m= 1.0 - 1.2) was reached on June 9, 1925. The

light curve was characteristic of a "slow" nova

with t_- 150 (182) days. The light curve has

been studied by several authors: e.g., Spencer

Jones (1931), Campbell (1929) and Payne-

Gaposchkin (1957). Characteristic were the

large oscillations during the early decline, with

several maxima of nearly equal magnitude

(Figure 8-89). It is notable that the preoutburst

magnitude was estimated as 12.8 (12.7, 13.3)

and that the present magnitude is 12.3 (12.1).

Sixty years after outburst, the star has not yet

returned to its preoutburst magnitude. This
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Figure 8-89. The light eurve _the slow nova RR Pic,

atut. Jor comparison, the light curve of the other slow

nova DQ Her. The typical dip in the light curve, char-

aeteristies of several slow novae, is missing in RR Pie,

as well as in the extremely slow nova HR Del (see next

section 8-11 ).
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behavior seems in contrast with the general

conclusion by Robinson (1975) that novae

before and after outburst are characterized by

the same m value.

The spectral type of the nova at the time of

the first spectroscopic observations was esti-

mated as F2, while at maximum it was F8. This

behavior reflects that of slow novae, which

near maximum display a later spectral class

than fast novae (F2-F8, instead of A0-A5).

The premaximum and maximum spectra

have shown outflow velocities of the order of

-100 km s _, while velocities of up to -400 km

s _have been observed at the end of the evolu-

tion of the principal spectrum during the first

10 months after outburst.

The spectral behavior after maximum has

shown a very complex behavior and has been

b)

lq '

k31_

Figure 8-90. a) RR Pictoris, changes in the spectrum near Hd 4101 over about 320 days, tra(ingsj)om Li_ k spectra, not

redu_'ed to intensities. Left strip, top to bottom: .ID 24309 (date of maximunt; for clarity the deep center qf the hydrogen

line is omittedL 24314, 24316, 24319: center strip: JD 24453, 24469, 24520: right strip: .ID 24541, 24027. The

development is similar to that shown in Figure 4, hut the hirer SlWetra are less complicated hy emissions other than that

_(hydrogeth Note that all the dates on the two figures are not identical. Violet is to the h![i

([iom C.P. Gaposehkin in HP 51 / 752) 1958.

h) RR Pietoris, changes in the spectrum near ttg 4340 over ahout 320 days, traeings [)om Lick spectra, not reduced to

in tensities, l.eft strip, top to bottom: JD 24309 (date of ma_ im toll), 24.¢ 14.24.¢ 16,243 19; middh'strq_: JD 2445.¢, 24469,

24474; right string .ID 24520, 24564, 24627. The.first tracing shows only the pre-ma._imum spectrum. In the suhsequent

tracings, the principal SlWCtrum emerges amt strengthens to the violet qf the i_re-maximum spectrum, which gradually

Jades. In the second strip the i_rincipal .Vwetrunl, and the intense, more highly-displaced ._pectta o[hydrogen _hmtinate

the absorptions, and the hri_ht red.'ard edge, associated principally with the highly-disphued spectrum, hecomes

eonspiettous. By JD 24469 the hright lira" has developed a distinctive structure, with a strong redward edge; the

vioh,tward attd redward edges q[ the Fe II line at 1 4351 have also heeonte I_rominent. ht the third strip, the hydrogen

abs,..ptions are diminishing in intensity, the bright lines displacing more structure. On .ID 24564 the absorptions are

ahnost gone, and the violetward and redward edges rethe [0 I11] line 14363 are superiml_osed on those qf the Fe II line.

On JD 24627, only the lines of hydrogen and [0 111] are discernihh', each with complex structure. Note that the two last

tracings cross Violet is to the I£ft.
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described in great detail by H. Spencer Jones

(1931), by W.H. Right (1925), and by C.

Payne-Gaposchkin (1957). Outflow velocities

were lower than in other novae, and the Orion

spectrum showed absorption displacements of

up to -1500 km s-L A peculiarity of RR Pic has

been the extreme weakness of the N III k4100

lines during the Orion stage. These lines are

usually associated with the "nitrogen flaring,"

the secondary fluorescence produced after the

excitation of the 3d P° level of O III by He II

Lyon.

Another distinction between fast and slow

oovae during the Orion stage is the presence of

numerous [Fell] emissions in slow novae and

their weakness or absence in fast novae

(McLaughlin, 1960, p.585). It is also remark-

able that RR Pic, during the nebular stage, has

shown unusually weak lines of [O III] _,4957
and 5007.

The nebula surrounding RR Pic has shown

an expansion rate of 0.18 arc sec yrL The fact

that the nebula of RR Pic was not strictly

spherically symmetric was reported by Payne-

Gaposchkin (1957). In a direct photography of

the remnant, taken by Duerbeck and Seitter

(1979) at the prime focus of the ESO 3.6 m.

telescope, the ex-nova is surrounded by a struc-

tured nebulosity; an equatorial ring(s) and

double "polar caps" or "knots" are clearly evi-

dent on opposite sides of the remnant, in a

structure which somehow resembles that sur-

rounding the slow nova DQ Her (see Figure 6-

69).

Williams and Gallagher (1979) have studied

the nebula surrounding RR Pic using the Cerro

Tololo Vidicon spectrometer. The filaments

have spectra very similar to those of high exci-

tation planetary nebulae, and show also promi-

nent [Fe V] emissions. The source of excitation

of the nebula is in the UV radiation field of the

hot component of the system (Figure 8-91; see

also Figure 6-70).

Photoionization models suggest tempera-

tures of the order of 2.5 x 105 K and L(Star) -

4.4 x 10_4erg. s-L An enhancement of Helium
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Figure 8-91. Spectral scans of the nebular condensa-
tions to the NE and SW of RR Pic. The zero flux levels of
the scans are indicated on the ordinate axis.

(from Williams and Gallagher. 1979).

by at least a factor of two over the solar abun-

dances is required to explain the He II h4686
emissions flux.

Moreover, the fact that the low-ionization

line [N 11] h6584 ,_ is seen with moderate

strength indicates overabundances of nitrogen

by a factor of at least 10, while oxygen is proba-

bly underabundant.

The dimensions of the nebula are presently
18"x 23".

X.B. RR PIC IN QUIESCENCE: OF
HUMPS AND DIPS IN THE LIGHT CURVE

The first photoelectric observations of RR

Pic were made by Van Houten (1966), who

found a light curve with a period of approxi-

mately 3.5 hours and suggested the presence of

an eclipse. This period was confirmed by the

observations of Mumford (1971). Vogt (1975)



madeanextensivesetof observations with the

purpose of determining a more accurate period

and confirming the presence of eclipse. The

determination of the photometric period by

Vogt was made difficult by the near absence of

features repeating at equal phases. The light

curve was characterized by a broad hump with

amplitude 0.3 magnitudes that lasted more than

half period. The low amplitude and the singular

shape of this hump made difficult its use for the

determination of the period. Fortunately, the

hump was found to always end in a sudden dip,

near minimum brightness; this feature was

used to determine the period:

JD (MAX) =2 438 815 379 + 0.1450255

q>= 0 corresponds to the main brightness maxi-

mum.

The (B-V) and (U-B) curves show that the

bluest parts of the curves are reached near

phase 0.0, the reddest, near phase = 0.5 (Figure

8-92).

A drop near t9 = 0.4 seems to be always pres-

ent, also in the V curve. Since this behavior re-

peated fairly well from cycle to cycle, it was as-

sociated by Vogt to orbital motion.

It is remarkable for what follows that in
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Figure 8-92. Mean ('olors as a function of phase dur-
ing December 1972.
(fiom Vogt, 1975).

Vogt observation, a blue peak, especially pro-

nounced in (B-V), is present near phase 0.75

(Figure 8-93). Vogt also found that, generally,

a flickering was superimposed on the light

curve with a typical time-scale of 5-15 min and

amplitude of 0.05 + 0.10 magnitudes. Also

time-resolved observations by Warner (1981)

have revealed the presence of occasional multi-

periodic rapid oscillations, which were present

in about one-quarter of the observing runs. The

periodogram analysis showed periods in the

range of 20-40 s, with a more persistent one

with P = 32 s. Schoembs and Stolz (1981) have

V
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Figure 8-93. Left. Mean light curves and colors versus phase for all observations of Dec. 1972 averaged in 0.02 P inter-
vals. Right." the phases are indicated in this schematic model fi_r RR Pic.

(from Vogt 1975).
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confirmedthepresenceof suchrapidoscilla-
tion with P=32 s.

New UBV measurements by Haefner and

Metz (1982) have confirmed the period of Vogt

and have also indicated the high stability of the
period, with dP= 1.4 x 10t_.

P

However, they found a quite different be-

havior in the light curve with a "w" shape as a

characteristic feature of all light curves (Figure

8-94), and much more pronounced than in

Vogt's observations. Different curves behave

similarly and show minima near phase 0.43 and

phase 0.74 (deeper). This behavior is in con-

trast with that described by Vogt who reported

I(B)

1600

1500

1400

P

0.0008

0.0004

0.000(3

TH ETA

8O

; ._ ,
, "*. .... T ....

60 ; --

20 , , , A . , , I A , ,

-0.1 0.3 0.7 p 1.1

Figure 8-94. Top.'B intensity derived by averaging the

B light curve within a phase interval of O.05 and repre-

sented by arbitrary count numbetw, Middle and bot-

tom; the hot spot polarization percentage and angle,

respectively. Solid line: derived from the observations,

dashed line: numerical approximation (0 is indefinite

for phase O.OP).

(from Hae]her and Metz, 1982).
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the presence of a blue peak near q_=0.75. Spec-

troscopic observations by Wyckhoff and

Wehinger (1977) have revealed the presence of

radial-velocity variations in the He II _,4686

emission. These variations are nearly sinu-
soidal with 2K _120 km s'. The minimum in

this spectroscopic curve is quite close to _ = 0,

the principal maximum of Vogrs observations.

Combining their photometric results with these

radial-velocity observations, Haefner and

Metz (1982) have suggested that, since _ =

0.75 corresponds to the orbital condition in

which the red component is in front of the white

dwarf, the minima they observed near _9= 0.74

were caused by occultations (eclipses) of the

hot component (white dwarf, accretion disk).

This suggestion was supported by the fact

that optical spectra showed that the HI3 emis-

sion was weaker near q_=0.7. (But He II h4686

remained constant.)

The suggestion reported above is in contrast,

however, with the indications of Vogt (1975)

who found the presence of a blue peak near q_=
0.75.

New observations by Kubiak (1984) con-

firmed the shape of the V curve found by Vogt.

The U curve, however, suggested the presence

of an eclipse beginning near q_= 0.8 and lasting

until q_= 0.96. In the V and B bands, the eclipse

was less evident. The system appeared bluest at

the beginning of the "eclipse."

Kubiak claimed the presence of coherent

brightness modulation in all bands with a pe-

riod of about 15 rain. A study by Haefner and

Schoembs (1985) of a large amount of photom-

etric data has not confirmed the permanent ex-

istence of this period. They suggested that the

15-min period found by Kubiak was attribut-

able to transient phenomena in the disk.

The new observations by Warner (1986a)

have not confirmed the periodicity either.

Power spectra of its extensive observations

have not detected the periodicities found by

Kubiak, nor the presence of any other period

larger than 1 min (except for the orbital one).



Probably most of the contradiclory indica-

tions reported above are attributable to real

intrinsic changes with time in the photometric

behavior. Warner (1986a) has also recently

pointed out that in the last years, the wtriations

in the light curve have had a smaller range and

that more evident tlickcring activity has been

present (see Figure 6-4). A comparison of these

curves clearly indicates that from 1975 to 1984

there has been a reduction both in the ampli-

tude and in the phase interwd of the hump. This

has coincided with a decline in the mean bright-

ness of the system.

RR Pic is currently at m -12.3 and is still

declining in luminosity.

The light curve in recent observations

(Warner 1986a) is characterized by repetitive

but singular "eclipse-like'" features superim-

posed on a highly variable background.. The

minimum near q_-0.42 reported by Haefner and

Metz (1982) is now scarcely evident: whereas,

that near ,,p_0.74 is the dominant feature. The

interpretation of this complex behavior is not

straightforward and unequiw)cal. The origin of

the hump, its progressive decay, the reality of

the interpretations of the dips (minima) as

eclipses needs further investigations.

X.C. THE UV BEtlAVIOR OF RR PIC

I.IV observations of RR Pic can set some

constraints on the physical parameters and the

location of the region where the (hot) radiation

entitled by the system is produced.

Optical observations by Vogt (1076)

showed that the ex-nova had it blue continuum

with He I1 4686 as the strongest emission line,

with W _ 8A.

Other (fainter) emissions are the hydrogen

Bahner lines, the Pickering series of He I!, and

the Cill 4650 line. These features are typical

signatures of a high-temperature object.

The first UV observations of RR Pic were

made by Gallagher and Holm (1974) using the

8-inch photometric telescope of the OAO-2

Wisconsin Experiment Package. Fair data were

obtained for RR Pic, which indicated a quite

high (color) temperature, in excess of 35,000

K, and a bolometric luminosity of the order of

10 L . Variations of the order of 0.5 mag in
@

two observations separated by about 1.7 hours

- 0.5 P) seemed also to be present.

Duerbeck el al. (1980a) and Krautter cl al.

(1981) have reported on the first IUE observa-

tions of RR Pic (see Figure 6-36t. Krautter el al.

estimated UV temperatures of about 28,000 K

and suggested the presence of P Cyg profiles

(although much weaker than in HR I)el) in the

NV 1240, Cll 1335, and AI Ill 186(} lines.

He II 1640 and NV 1240 are the strongest

emissions in the spectrum, confirming the

high-temperature character revealed in the

optical emissions.

Kraulter el al. (1981) have found tempera-

tures on the order of 28,000 - 40.0()(1 K, or, al-

ternatively, they have made a fitting to the

continuum distribution with a power-law _._' ,

where _+ = 1.81 _+ 0.03.

The UV luminosity was estimated at 4.4 l..

Krautter el al. (1981) noticed the presence of

two absorption components in the P Cyg pro-

files with velocities of-250() km s I and -460(}

km s/ respectively.

Wargau et al. 11982), using the same spec-

tra, attempted an alternative fit to the contin-

uum distribution and suggested a superposition

of two blackbodies, one with T = 14,000 K

(originated in the disk) and the other with T =

90,000 K (attributed to the boundary layer).

RR Pic has been also studied by Rosino el al.

(1982). The continuum distribution has been

interpreted as a combination of two blackbod-

ies with temperatures of 20,00(} K and 35,000

K. They detected the presence of (pure) absorp-

tion lines of Si II, Si III, Si IV, and S II, but did

not confirm the presence of the P Cyg profiles.

The width of the emission lines was interpreted

in terms of expansion velocity of the shell, and

a value of about 1700 km s' was derived.

RR Pic has been the target of an UV monitor-
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ing that covered almost two complete cycles

(Selvelli, 1982). A sequence of alternate expo-

sures with the short k and long ?_ cameras has

made it possible to obtain 12 low-resolution

spectra in about 6.5 hours, thus providing a rea-

sonable time-resolution for the detection of _-

related variations. (The typical exposure time

was 18 rain). After correction for reddening (E

(B-V)- 0.05), the continuum fits quite closely

the _7/3 relation, although the index a ranges

actually from 1.7 to 2.1 for different spectra.

Figure 8-95 shows two fits to the continuum at

different phases. Note that the mean time sepa-
ration between two successive SWP and LWR

spectra (which are merged together) is of about

30 rain., which corresponds to A_- 0.14.

Having several (6) spectra at disposal for

each range, it is easier to detect faint lines

(which in a single spectrum could be masked

by noise) and to ascertain the reality of doubt-

ful features. A careful examination of the spec-
tra has led to the detection of a wealth of emis-

sion lines over the entire range.

The spectrum is characterized by strong per-

mitted transitions of high-ionization species

such as N V 1240, Si IV 1400, C IV 1550, He ii

1640. Among the low-ionization species, only

Mg II is present, while O 1 1300, A! 11 1670, C

1I 1335, Si II 1810 and similar species are deft-

nitely absent. The intersystem lines are rather

weak: O V] 1218, N IV] 1486, O III] 1666, N

III] 1750, AI 1I] 2669, or absent: Si III] 1892,

C II1] 1909, CII] 2326). [Ne V] 1575. [O II] 2469,

and [Mg V] 2784 are probably present although
faint.

The lines of the He II Paschen series are

clearly present (note that the line of the Picker-

ing series were reported in the optical by Vogt),
together with some O Ili lines, notably 2836,

produced in the Bowen fluorescent mechanism

originated by He II Lyon.

Some emission features lacking any reason-

able identification, such as _. 2575, _. 2405, _.

1446, have been attributed to "coronal lines,"

although the absence of a few of the strongest

coronal lines in the solar spectrum, such as Fe

XI 2648.73 and Fe XII 2565.99, poses a serious

problem regarding the reality of these proposed
identifications.

There is definitely no evidence of P Cyg pro-

files, neither for the lines proposed by Krautter

et al. (1981) nor for any other line. Nor is there

evidence of the absorption lines reported by

Rosino et al. (1982), except for the feature near

_. 1295, attributable to Si II1 UV 4, which seems

to be variable.
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X.C.i. THE UV SPECTRAL VARIATIONS

The continuum, as well as the emission

lines, shows significant variations in the vari-

ous spectra that have been taken.

As is customary, the various spectral quanti-
ties have been ordered as a function of the

phase ,,p, using the ephemeris given by Vogt

(1975). The continuum does not vary signifi-

cantly in shape, and, therefore, only the total

flux in the continuum for the SWP asn LWR

regions, respectively, has been reported. Vari-

ations as large as 1.5 have been found between

the weakest and the strongest continua. The

line spectrum shows stronger variations, espe-

cially in the near UV region, where variations

around a factor of 5 have been observed for

some lines.

Figure 8-96 reports the phase-related vari-

ations of the following quantities: m v (FES),

j,21_J0 F c dR and f3200 FzC dh (in erg cm -'
12(_} _, J2II(R)

s _), line-emission intensities (in erg cm e s_)

for N V, C IV, He 1I, Mg II, and O III 2836. The

phase _ associated with each spectrum is that

of mid-exposure. The phase associated with the

m(FES) is that of - 2 rain before the beginning

of the exposure. In accordance with Vogt

(1975), q_ = 0 corresponds to the main maxi-

mum in the visible light curve, which has a

minimum around q_ = 0.42 (center of the

eclipse). Schoembs and Stolz (1981) have

found minima also around _ = 0.6. Haetner and

Metz (1982), on the other hand, give tp = 0.75

for the primary eclipse (in accordance with the

He I1 R.V. curve).

The mean continuum flux in the _,)V1200 -

3000 range is of 6.8 x 10 l0 erg cm 2 s-I. Assum-

ing a distance of 440 pc, the mean UV luminos-

ity results in 1.7 x 1034erg s-_ - 5Lcv

From the IUE data, it is easy to see that a

maximum common to the above-mentioned

quantities falls between tp = 1.6 + 1.9, while a

minimum for most quantities occurs around q0

= !.1. + !.5. These results are in partial agree-

ment with those of Vogt (1975), who found

minima around _ - 0.4. but the occurrence of

maxima centered around tp = 1.75 is in com-

plete contradiction with all previous findings.
In addition, the different behavior of the above

quantities at about the same phase in two differ-

ent periods is remarkable. See, for instance, the

dramatic changes for Mg II and O II! between

= 0.687 (deep minimum) and tp =1.752.

On the other hand, Kubiak (1984) claims

that the "eclipse" occurs between q_= 0.80 and

q_ = 0.95.

The UV data are in contradiction with con-

clusions drawn from the behavior in the optical

and clearly rule out possible eclipse of the hot

component. If the interpretation based on the

R.V. curve of the He !I Jv 4686 line is correct,

such eclipses are expected near ,,p= 0.75 when

the companion is in front of the hot component.

The UV data, on the other side, indicate that

neither the continuum nor the emission lines,

which are likely to be formed close to the hot

component, become weaker near t9 = 0.75. One

more indication against a high inclination of

the system comes from the considerations of

Warner (1986b). Systems with high inclina-

tion, seen edge on, are expected to have a flat-

ter UV continuum that RR Pic actually has.

Probably, a key to understand both the behavior

in the UV and the discrepancies about the

phases of the various humps and dips in the

light curve at different epochs is the presence

of transient phenomena, which are superim-

posed to the periodic-phase-related changes.

Simultaneous IUE and ground-based obser-

vations covering at least two cycles are re-

quired.

The x-ray luminosity of RR Pic in the range

(0.15 - 4.5 Kev) has been determined by Becker

and Marshall (1981) using the Einstein IPC

value 2.3 x 10 3Eerg s-_, which is close, although
weaker to the mean value of the few old novae

detected in the x-ray range.
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Figure 8-96. Phase variations of the ,flux in the emission lines of 0 III 2836, the 2800 resonance doublet of Mg II.

the 1240 restmance doublet of N V and the 1550 resonance doublet of C IV. He II 1640, and the integrated contin-
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XI. HR DEL

(written by Duerbeck)

XI.A. THE LIGHT CURVE

The outburst of HR Del ( N Del 1967) was

discovered by G. Alcock on 1967 July 8. The

brightness of the star "increased, starting from

1967 June 3, from the prenova magnitude of

12.0 to to a premaximum halt at 5.0; thc peak

brightness of 3.4 was reached on 1967 Decem-

ber 12. A secondary maximum of 4.3 occured

in May 1968, and thereafter, the nova declined

gradually. By 1975, it had returned to nearly

12.0 The light curve is well-covered, it shows

similarities to that of the slow nova RR Pic,

whose early rise however, was, missed.

A visual light curve from the beginning of

the outburst to the end of 1971 is given in

Drechsel et al. (1977). It shows the broadband

V magnitude, which includes continuum +

emisssion line light, as well as the continuum

magnitude. The continuum magnitude de-

clined much more rapidly, reaching 12.0 in

mid-1971 (Figure 8-97).

XI.B. SPECTRAL STUDIES

High-dispersion spectroscopic studies were

made by Sobotka and Grygar (1979), by Hutch-

ings (1969), by Yamashita (1968, 1975), by

Barlt and Szumiejko (1975), and by various as-

tronomers using coude spectra of the Haute

Provence Observatory (Andrillat and Houziaux

1970a, 1970b, 1971, Andrillat, Fehrenbach and

Hou-ziaux 1974, Andrillat and Fehrenbach

1981, Friedjung (1977), Malakpur (1973),

Antipova, 1977). Medium-dispersion studies

were made by Galeotti and Pasinetti (1970),

and by Rafanelli and Rosino (1978). Low-dis-

persion studies were reported by Seitter (1969,

1974) and Woszczyk et al. (1968). Spectro-

photometric studies based on objective spectra

were published by Drechsel et al. (1977).
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XI.C. THE REMNANT lax yields a distance of 850 + 50 pc.

Models of the evolutionary remnant were

computed and compared with observations by

Tylenda (1977, 1978, 1979).

The nebular remnant was spatially resolved

on direct photographs by Kohoutek (1981). Ob-
servations in 1981 show an oval shell with a

size 3.7" x 2.5". The nebular expansion paral-

A kinematical model was developed by Solf

(1983) from the study of spatially resolved

coude spectra. The main body of the material is

found in an equatorial ring and two "polar"

rings (rings at higher azimuthal angle). The

polar axis is seen at position angle 45 ° and has

an inclination of 38 ° with respect to the celes-

tial sphere (Figure 8-98).

%

v0

to observer

w b

V b

v W c

V
c

W +
Vp

V

+

line of sight

ring

Vp

+

vr

1,'igme 8-98. A geometri_'al and kinemati('al model o['the shell _71ItR Del, {onsisting r!/'two polar caps (sket('hed hy trun-

cated (ones) and an equatorial ring (radial thickness m)t _ketrhed). Radial (V_,) and tangential (Wh) components of the

polar (Vt,) atul equatorial (V ) expan._ion veh_('ities, o((urring on the near (-) or the.fi_r (+) side _[" the shell. AIso indi-

cated are the velocity components _]the hulk motion of the ('aps (V,, W, ). 77_e caps and the ring are filh'd with mattr'r

whi('h is heavily clunq_ed (Soil 1983 ).
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XI.D.HRDELASA CLOSEBINARY

Themostcompletestudyof thebinarymo-
tionwasmadebyBruch (1982), using his own

and previously published material. The period

is unambiguously determined to be 0.2141674

days: the amplitude of radial velocity of the He

!I 4686 line is 104 km/s, and only 34 km/s for

H{3 (Figure 8-99). No trace of the secondary

could be detected. The orbital inclination was

estimated to be near 41 ° , which yields for HR

Del the most plausible properties of a cataclys-

mic binary {e.g., mass ratio). This inclination is

in good agreement with the results of the study

of the nebular shell, assuming that the polar

axis of the nebula is perpendicular to the orbital

plane. A combination of Kepler's third law.

Paczynski's (1971) analytical expression for

Roche-lobe geometry, and Lacy's (1977) mass

radius relation for low-mass main-sequence

stars yields for the late-type component

M, = 7.7 . 10 5 pll42

with P measured in seconds, M, in solar masses.

In the case of HR Del, M, = 0.58 _+ 0.01 M .
o

RV

[km/sec]

50

-50

- 100

-150

-50

o

o o

o,
o

He II 4686 o

t .0 PHASE

Figure 8-99. Radial velocity curves o1" HR Del.for tie

II 4686 and tt_. Filled and open circles are data fiom

various sour_'es (Bruch 1982).
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From the observed radial velocity amplitude

and the inclination angle, for the compact com-

ponent, M r = 0.9 _+ 0.1 M
®

XI.E. EVOLUTION OF THE OUTBURST

As is typical for slow novae, the spectral

evolution was quite complex; the results of

radial velocity measurements of absorption

lines is shown in Figure 8-100.

Following Hutchings (1969), the outburst is

divided into three phases:

Phases I: Pre-maxirnum.

June - early December, 1967. The light

curve is smooth, levelling off at about 5 m, and

shows long term (time scale: weeks) fluctua-

tions of 0.5. The spectrum shows lines normal

for the early stages of the nova, and smoothly

varying line displacements: The strongest

lines are those of H, Fe II, Cr II, and Ti II;

during the course of evolution, more lines of

lower excitation and ionization appeared (Fig-

ure g-I(ll). The shortward displacement of the

absorption lines gradually decreased with time;

Malakpur (1973c) identifies the broad main

absorption, whose radial velocity decreased

from 625 to 230 km/s in this time interval, with

the premaximum spectrum. Furthermore, a

sharp, stationary emission component was vis-

ible. The Ca 11 H and K lines were strong and

showed four narrow highly-displaced absorp-

tion components in addition to the broad main

absorption, which disappeared on December

12, 1967. They are suspected to originate in

pre-existing circumstellar material (Figure 8-

102).

Phase I!. Maximum.

December 1967 - May 1968. The phase

begins with a rapid, short--lived brightening

up to 3.5 on December 14. The light curve

varies rapidly and irregularly by up to 1.2 and

as fast as 0.5 within one night. The spectrum

shows equally rapid changes, and each line has

several sharp absorption components and a

strong, variable emission. The strong lines

displayed a number of sharp absorption compo-

nents, which appeared individually and irregu-

larly, fading away during a period of a few

weeks. Malakpur (1973c) notes that the princi-
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Figure 8-102a. Spectral variations (_'HR Del from 1967 July 10 to December 13, spectral range )0_ 3872-4005. Note

the sharp interstellar absorption lines of Ca 11, the broad stellar absorption components showing expansion veloci-

ties decreasing from -660 m -300 km/s from early July Io September, and increasing again to -400 km/s in Decem-

ber. Note also the shalp absorption components which are violet-sh([ted with respect to the broad absorption line.

The emission components, fi)rmed in an outer extended envelope, are stationary. For details, see Fehrenbach atut

Petit (1969). (Courtesy of Ch. Fehrenbaeh and P. Veron. Observatoire de Haute Provence du Conseil National de la

Recherche Scientifique ( CNRS ) ).
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Figure 8-102h. See Figure 8-102h wertral range kk 4000 - 4150. Note the very remarkahh' ire'tease in intensity _./

the emissiort and absorption lines q/ Ti II and Sr II and the presence of three absorption cOrnl)onents on 1967 August

28 and 29. For details, see Fehrenhach el al. (1968a), and Fehrenhach et al, (I 968h). (Courtesy of Ch. Fehrenha¢h

and P. Veron. Ohservatoire de Haute Provence du Conseil National de la Recherche Scientifique (CNRS)).
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Figure 8-102c. See Figure 8-102a spectra/range 22 4140 - 4300. (Courtesy of Ch. Fehrenbach and P. Veron. Observa-

toire de Haute Provence du Conseil National de la Recherche Scientifique (CNRS)).
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toire de Haute Provence du Conseil National de la Recherche Scientifique (CNRS)).
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pal spectrum, visible since August 27, 1967,

experienced a sudden increase in velocity on

April 21, 1968, (Figure 8-103), when the dif-

fuse-enhanced system, visible since December

17, 1967, merged with it. The emission compo-

nents were much stronger than during Phase I,

and appeared to be a blend of several contribut-

ing emissions, each of which was intially sharp

and narrow but which gradually spread in

wavelength while diminishing in central inten-

sity, again over a period of several weeks. The

velocities of some components are in excess of

1700 km/s. The correlation between luminosity

and spectrum changes is not clear.

The composition of the spectrum in Phase II

is similar to that at the beginning of Phase I. It

appears to arise from a number of successive

shells each with slightly different temperature,

and possibly composition. While the excitation

state of lines during Phase I corresponded to

excitation potentials of I to 5 eV, the excitation

state here appears to cover the potentials of 2 to

3 eV in the high-velocity shell (up to 1000

kin/s), and of 0.5 to 3 eV in the low-velocity

shells.

Malakpur (1973c) notes that the Orion sys-

tem had its first appearance on May 11, 1968

(Figure 8-104).

Phase III. Transition and nebular stage.

Phase III begins in June, 1968, with the ces-

sation of irregular activity. The light curve falls

smoothly to m = 8, and the spectrum changes

rapidly through the Orion to the nebular stage,

where is characterized by strong, multiple-

peaked emissions. Malakpur (1973c) deter-

mined the beginning of the nebular stage to be

around July 28, 1968. No shells were ejected

after May, the spectrum began to change rap-

idly, going through stages of increasing excita-

tion and dilution, to the final nebular stage, in

about 10 weeks. The continuum became very

blue and then faded, while the emission line

strength increased. The emission lines split

into three components, and the relative intensi-

ties differed between allowed and forbidden

lines.

During August, the continuous spectrum

continued to fade. Starting from that date, until

1972, various coronal lines could be seen in the

spectrum: [A X], [Fe XI, lFe XII, IFe XIVI, lFe

XVI, INi XIII, and [Ni XVI (Andrillat and

Houziaux, 1970a; Rafanelli and Rosino, 1978).

The radio light curve is well covered in the

later stages. A Hubble flow model yields a

good fit to the observations at several frequen-

cies (Seaquist et al., 1979) (see Figure 6-76).

5853 5945
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30. 4
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Figure 8-103. Spectral variations of HR Del in 1968 April in the region ,L_ 5800 - 5950. Note ttle strong interstellar D
lines of Na I and the violet shifted stellar D lines. (Courtesy of Ch. Fehrenbach and P. Veron. Ohservatoire de Haute
Provence du Conseil National de la Recher_'he Scientifique (CNRS)).
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Figure 8-104, The spectral variations of HR Del [Jom 1968 April to 1968 July (Courtesy of Ch. Fehrenhach and P.

Veron. Ohservatoire de Haute Provence du Conseil National de la Recherche ScientiJi'que (CNRS)).

XI.F. CHEMICAL COMPOSITION

Table 8-5 shows the results of various deter-

minations of the chemical composition of HR
Del.

The abundance dererminations of Antipova

(1977) Raikova (1977), and of Ruusalepp and

Luud (19711 are derived from the curve of

growth method applied to the absorption lines

of the principal spectrum (August - December

19671, and using the usual equations by

Boltzmann and Saha, i.e., by assuming that the

pseudophotosphere of the nova is in LTE, a

condition very far from its real state. The deter-

minations by Tylenda (1979) are more reliable

because they are based on the emission lines of

the envelope during the nebular stage (1971-72

and August 1975), using two different models

(A and B). Tylenda (1978) shows that the ob-

served line intensities of the envelope in the

nebular stage cannot be fitted by models that

assume that the central source of the ionizing

photons radiates as a single star with blackbody

spectrum (Tylenda 1978). The theoretical line

intensities are 4 to 100 times fainter than the

observed ones. Instead, a good fit with the ob-

servations is obtained by assuming that the

central source of ionizing photons consists of

two components. An ionizing radiation, being

the sum of two blackbody distributions with

almost equal luminosities and temperatures of

about 4 x 10 4K and 2.5 x 10 s K, is adopted. The

input parameters of the two source models A

and B and the comparison with the observa-

tions are given in Tables 3 and 4 of Tylenda
(19781.

In spite of the different models and assump-

tions, all determinations agree in obtaining a

CNO excess. Tylenda (19781 gives C(HR Del)/

C(Sun) = 25, N(HR Del)/N(Sun) = 630, O(HR

Del) O (Sun) = 125, Ne (HR Del)/N(Sun) =37.

These values are in good agreement with the

average values found for novae (Collin-Souf-

frin, 1977).

Table 8.5 -- The table shows the results of various determinations of the chemical composition of HR De[

element Antipova Raikova Ruusaleep Tylenda (A) (B) Sun

H 24.64 25.49 26.411 25.7? 25.0

He 25.83 25,20 23.8

C 22.98 22,42 23.56 23.00 23.00 21.6

N 23.14 22.53 22.80 23.94 23.50 2(I,9

O 23.59 23.87 24.08 23.70 21.8

Ne 22.78 22.37 21.0

Mg 20.34 20.71 2(}.28 20.6

AI 19.34 19.5

Si 21.02 20.92 21.52 21). 7

Ca 19.02 20.48 I 9.3

Sc 15.90 16.64 16.g3 16.1

Ti 17.72 18.26 18.73 18.1

V 16.60 17.18 17.51 17.11

Cr 18.37 18.22 19.57 18.3

Mn 17.61 18.97 18.0

Fe 20.83 21).83 19.98 20.5

Sr 15.85 t6.67 15.36 15.9

Y 15.56 15.97 15.1

Zr 15.37 16.22 15.7

Ba 14.85 15.62 15.1

La 14.64 14.4
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